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Abstract
Video analytics is the killer workload in edge computing, which in-

volves the scheduler’s complex decisions to balance analysis perfor-

mance (latency and accuracy) and resource consumption (network,

computation, and energy). Traditional schedulers address this as a

single-objective optimization problem with fixed weights, unable

to precisely capture unknown system preferences due to intricate

pricing rules across various service levels and resource costs, con-

sequently leading to suboptimal system benefit like monetary gain.

In this paper, we propose a Bayesian optimization-driven multi-

objective scheduler, PaMO, that can proactively explore the system

pricing preference by pairwise comparing outcome vectors of all ob-

jectives. Moreover, PaMO designs a heuristic scheduling algorithm

with a zero-delay jitter guarantee to avoid performance degrada-

tion caused by resource contention and uses a revised Bayesian

optimization algorithm to make video configuration and sched-

uling decisions. Experiments on real video analytics workloads

show that PaMO can achieve up to 53.9% benefit gain compared to

state-of-the-art scheduling methods.
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• Theory of computation→ Scheduling algorithms.

Keywords
Adaptive configuration, Video analytics, Edge computing, Periodic

scheduling, Bayesian optimization, Multi-objective optimization

ACM Reference Format:
Liang Zhang, Hongzi Zhu, Yunzhe Li, Jiangang Shen, and Minyi Guo. 2024.

The Blind and the Elephant: A Preference-aware Edge Video Analytics

∗
Hongzi Zhu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1793-2/24/08

https://doi.org/10.1145/3673038.3673081

Scheduler for Maximizing System Benefit. In The 53rd International Confer-
ence on Parallel Processing (ICPP ’24), August 12–15, 2024, Gotland, Sweden.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3673038.3673081

1 Introduction
Nowadays, numerous intelligent applications integral to our daily

lives rely on video analytics for prompt decision-making. For in-

stance, the advanced map navigation functionality [1] relies on

the real-time analysis of the road condition videos, and the video

analysis of the chemical workshop [8] helps managers to iden-

tify equipment and personnel security risks. In such application

scenarios, video streams collected from distributed cameras are

scheduled to an edge video analytics (EVA) system consisting of

specific servers located at the edge of the network. Such an EVA

system relies on the scheduler to configure video analytics param-

eters and allocate analytics requests to servers to provide timely

and reliable results to users while maximizing the system benefit.

However, it is challenging to make optimal EVA schedule due to

the intricate and uncertain relationship between the system benefit

and scheduling variables like video parameters and server alloca-

tion strategies. Specifically, the system benefit is affected by both

the service prices and the system costs. However, diverse pricing

rules exist in the system, such as tiered electricity or network traffic

prices across different areas or network operators [29], differen-

tiated rental prices for heterogeneous servers [2], and dynamic

pricing based on the quality of service (QoS) metrics [30]. More-

over, the resource usage and the quality of service on different

scheduling decisions are also difficult to estimate due to potential

resource contentions and ever-changing video contents. The above

reasons make it challenging for the scheduler to estimate total sys-

tem benefit accurately across different scheduling configurations,

thus hindering its ability to make optimal decisions to maximize

system benefit.

In the literature, existing EVA schedulers typically begin by

modeling the correlation between various QoS and resource us-

age metrics, and scheduling variables using polynomial regression

techniques, and then solve a single-objective optimization problem

defined by the linear weighting of these metrics to make scheduling

decisions that maximize system benefit. Among them, the adaptive

configuration solutions [13, 19, 32–34] adjust frame sampling rate

and resolution of video streams to reduce resource usage while

sacrificing less analysis accuracy for optimizing system benefit. It

https://doi.org/10.1145/3673038.3673081
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takes advantage of the robustness of neural networks for small

input changes or specific scenes to save resources for other com-

plex video streams that require more resources. The solutions to

optimize server allocation strategies [19, 33, 34] adjust mapping

relationships between video streams and multiple edge devices

to avoid resource contention and improve the quality of service

and resource utilization. However, these solutions lack a thorough
discussion for selecting optimal weights or restructuring the system
pricing preference on different metrics, i.e., the differentiated impact
of diverse metrics on system benefit caused by complex and unknown
pricing rules. Some existing classical weight definitions [10], such

as Equal weights, Rank order centroid (ROC) weights, Rank-sum

(RS) weights, and Pseudo-weights, are not flexible enough to adapt

to diverse and dynamic EVA system environments. In summary, no

existing EVA scheduler can perceive system pricing preference and

make optimal scheduling decisions for maximizing system benefit.

In this paper, we propose a Bayesian optimization-driven multi-

objective scheduler for edge video analytics, called PaMO, which

interacts with the system decision-maker in advance or in the op-

timization loop to capture system pricing preference on different

metrics or objectives. Specifically, we first fit the outcome function

of each objective, including latency, accuracy, network bandwidth,

computing power, and energy consumption, using profiling data

of video analytics workloads. Then, we train a Gaussian-process-

based preference model according to pairwise comparison data of

different outcome vectors obtained from the decision maker to char-

acterize the priority of all objectives. Finally, we use the Bayesian

optimization framework to iteratively update outcome and prefer-

ence models and recommend better solutions aimed at maximizing

system benefits with the help of an anti-noise acquisition function

in each iteration until convergence.

Three main challenges are encountered when designing PaMO.

First, it is challenging to quantify the system pricing preference

on diverse optimization objectives due to its influence by complex

pricing rules. Even for a simple linear weighted of multiple objec-

tives, extensive expert knowledge or experimental measurements

are required to determine precise weight values. Alternatively, we

ask the decision maker some simple comparative questions on the

dataset of pairwise outcome vectors to extract pricing preference

information about different objectives. This approach transforms

the quantitative task into a qualitative one, alleviating the decision-

maker’s burden.

Second, it is non-trivial to formulate the relationship between

the end-to-end latency and video configuration and scheduling

schemes due to potential performance interference among con-

secutive incoming frames on an overloaded edge server. To tackle

this difficulty and accurately fit the outcome model of the latency

metric, we propose a group-based heuristic scheduling algorithm

that proactively avoids scheduling streams with potential resource

conflicts onto the same node to achieve zero jitter of each frame

and improve latency stability to facilitate modeling.

Last, it is time-consuming and resource-intensive to search for

optimal solutions by traversing an exponential search space formed

by three-dimensional decision variables. Specifically, considering

that𝑀 video streams, whose resolution and frame sampling rate

have𝐶𝑟 and𝐶𝑓 knobs respectively, need to be mapped into 𝑁 edge

video streams
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Figure 1: A typical edge video analytics system.

nodes, the search space size becomes

(
𝑁 ∗𝐶𝑟 ∗𝐶𝑓

)𝑀
. To reduce

the scheduler’s decision response time and save valuable resources

at the edge, we propose a revised Bayesian optimization algorithm

with batch noisy expected improvement (qNEI) acquisition function

to solve the multi-objective optimization problem defined by pre-

trained outcome and benefit models efficiently. The qNEI function

can reduce the interference caused by inaccurate models to the

solution search and expedite problem convergence.

We evaluate the performance of PaMO using video object detec-

tion workloads on several NVIDIA Jetson devices. The experimental

results show that PaMO greatly enhances system benefits by ac-

curately modeling outcome and preference functions. Moreover,

it exhibits strong robustness across various experimental setups.

Specifically, PaMO can achieve near-optimal system benefits with

low relative errors across diverse system pricing preferences and

configurations. Compared with state-of-the-art methods, i.e., JCAB
and FACT, PaMO improves system benefit by up to 53.9% and up

to 26.5%, respectively.

We highlight the main contributions made in this paper as fol-

lows: 1) We formulate a multi-objective optimization problem for

EVA scheduler, which includes various outcome functions of objec-

tives, the pricing preference function that reflects the system benefit,

and a zero-jitter constraint that is proven to avoid resource con-

tention among video streams. 2) We propose a pairwise comparison-

based method to learn the system pricing preference on different

objectives and train a Gaussian process model using comparison

results to surrogate the preference function. 3) We design a group-

based heuristic scheduling algorithm to meet the zero-jitter con-

straint and propose a revised Bayesian optimization algorithm with

the qNEI acquisition function to accelerate the solution of the above

optimization problem.

2 Preliminaries
2.1 Video Analytics at the Edge
In edge video analytics scenarios, numerous video streams gen-

erated by cameras are transmitted to nearby edge servers via the

wireless network for analysis, as shown in Figure 1. Specifically,

each camera preprocesses and encodes the original video stream

before transmitting it to the designated edge server
1
. The edge

server decodes received video streams and processes them using

1
Modern smart cameras, like [11], typically incorporate both hardware and software

related to codecs, in addition to a limited computing capability that support extra

preprocessing tasks like resolution adjustments.
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Figure 2: The performance and resource consumption of two video clips from the MOT16 dataset under different configurations.
The network bandwidth remained constant at 100Mbps throughout this experiment. Two video clips exhibit a consistent
pattern of change in accordance with the configuration adjustments.

the DNN models’ inference service. The scheduler periodically

collects performance and resource information including the end-

to-end latency and analysis accuracy of video streams, and the

network bandwidth, computation and energy usage of all edge

servers. According to these real-time data, the scheduler adjusts

configuration and scheduling decisions for each video stream, in-

cluding the video’s resolution, frame sampling rate, and the target

device’s IP address, to optimize analysis performance and resource

efficiency. The cameras receive this decision from the scheduler

and execute it. This paper assumes that edge servers have uniform

resource conditions excluding uplink bandwidth variations and run

DNN models with the same structure to provide analytics services.

Each edge server can receive multiple video streams simultaneously,

and a video stream can also be scattered and scheduled to various

servers.

2.2 Adaptive Configuration and Scheduling
To better model the optimization problem of the scheduler, we ex-

plore the relationship between video configuration and scheduling

decisions and the analytical performance and resource consumption

through a series of experiments. First, we profile the performance

and resource consumption of two video clips from the MOT16

dataset [21] under various resolution and frame sampling rate con-

figurations. The actual measured data and the fitted surface are

shown in Figure 2. The result indicates that various video streams

exhibit a consistent pattern of change in accordance with the config-

uration adjustments, which motivates us to use the similar formula

to model different optimization objectives. Moreover, the second

subgraph of Figure 2 shows that the end-to-end latency remains

constant irrespective of the frame sampling rate when ample re-

sources are available. However, latency experiences an unexpected

increase when resource contention arises among multiple streams

or frames on a single edge server, as illustrated in Figure 3(a). This

unexpected latency accumulation becomes more evident as the

frame sampling rate increases. Therefore, the scheduler must con-

scientiously account for the computing power limits of a single

machine during the configuration and scheduling of video streams.

2.3 Necessitate Preference Exploration
Figure 2 shows that larger resolutions and frame rates lead to higher

accuracy, but they also take longer to process and consume more

resources. Due to this inherent conflicts among diverse objectives,
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Figure 3: Examples of resource contention andPareto optimal
solutions.

it is impossible to find an optimal solution that minimizes all objec-

tives in the multi-objective optimization problem of video stream

analysis. Therefore, we use Pareto optimal solutions to represent

those solutions for which no improvement can be made in any of

the objectives without causing degradation in at least one of the

other objectives. Mathematically, we define a feasible solution 𝑥1

dominate another solution 𝑥2 if ∀𝑖 ∈ {1, . . . , 𝑘}, 𝑓𝑖 (𝑥1) ≤ 𝑓𝑖 (𝑥2),
and ∃𝑖 ∈ {1, . . . , 𝑘}, 𝑓𝑖 (𝑥1) < 𝑓𝑖 (𝑥2). A solution 𝑥∗ (the correspond-
ing outcome 𝑓 (𝑥∗)) is called Pareto optimal if no other solution

dominates it. There is a Pareto optimal set for video analytics’

multi-objective optimization problem. Figure 3(b) illustrates the

outcomes of various objectives for three Pareto optimal solutions,

with outcomes normalized to the interval (0,1) for ease of compari-

son. The results indicate that none of the three solutions exhibits

dominance over the others. For instance, while Solution 1 excels

over Solution 3 in bandwidth, computation, and energy dimensions,

its accuracy falls short, preventing it from dominating Solution 3.

Consequently, schedulers need to learn a preference function based

on how different objectives affect the system benefit to comprehen-

sively assess the benefits of distinct Pareto optimal solutions and

thereby determine an exact optimal solution.

3 Problem Formulation
In the context of video stream analysis, the scheduler needs to

determine the optimal video configuration and server allocation

plan that aligns with system preferences across various objectives

for maximizing system benefit. This scheduling problem can be

abstracted as a multi-objective optimization problem. Mathemat-

ically, the outcome function 𝑓𝑖 : R𝑑 → R, 𝑖 ∈ 1, ..., 𝑘 denotes the

benefit associated with the 𝑘th objective in different configurations,
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while the preference function 𝑔 : R𝑘 → R represents the extent to

which different objectives affect the system benefit. Consequently,

the scheduling optimization problem of the EVA scheduler can be

expressed as the formulation:

max

𝑥∈𝜒
𝑔 (𝑓1 (𝑥), . . . , 𝑓𝑘 (𝑥)) (1)

where X ⊂ R𝑑 is solution domain consisting of all feasible reso-

lutions, frame sampling rates, and the allocated edge servers (i.e.,

𝑑 = 3). Our problem focus on five optimization objectives (i.e.,𝑘 = 5)

including the end-to-end latency, accuracy, network bandwidth,

computation and resource consumption. Next, we describe the vari-

ables related to the optimization problem and formulate different

outcome functions and constraints.

Variable Definition.We consider the video analytics system

containing𝑀′ video sources and 𝑁 edge servers who have equiva-

lent computing power (heterogeneous servers can be virtualized as

multiple homogeneous VMs or containers).𝑀′ video sources might

include𝑀∗ high-rate streams whose the worst-case processing time

of a single frame on one server is greater than their period (the

inverse of frame sampling rate), e.g., Video 2 in Figure 3(a). To avoid

additional queue delay caused by conflict between consecutive

frames for these high-rate streams, we split each high-rate stream

by sampling periodically into ⌈𝑠𝑖/(1/𝑝𝑖 )⌉ = ⌈𝑠𝑖𝑝𝑖 ⌉ new streams,

where 𝑠𝑖 and 𝑝𝑖 are the frame sampling rate and processing time

on a server of video stream 𝑖 . Consequently, the scheduler need

to deal with 𝑀 = 𝑀′ −𝑀∗ +∑𝑀∗𝑖=1
⌈𝑠𝑖𝑝𝑖 ⌉ streams that no resource

contention when scheduling it to a node alone. We denote these

𝑀 periodic streams as T = {𝜏1, 𝜏2, . . . , 𝜏𝑀 }, where each stream is

characterized by a tuple {𝑇𝑖 , 𝑟𝑖 , 𝑝𝑖 }, where 𝑇𝑖 is the inter-arrival

period (the inverse of frame rate,𝑇𝑖 = 1/𝑠𝑖 ), 𝑟𝑖 is the resolution, and
𝑝𝑖 is the average processing time of all frames from the stream 𝑖 on

a server. Besides, let 𝑞𝑖 ∈ {0, 1, ..., 𝑁 } represent the stream 𝑖 will be

allocated to the 𝑞𝑖 th server.

Outcome Function Formulation. Drawing insights from Fig-

ure 2, we model the relationship between different optimization

objectives and frame sampling rate or resolution through either

multivariable linear regression or polynomial regression. Specifi-

cally, the outcome function of accuracy, network bandwidth, and

computing power consumption can be expressed as Equation 2 and

3, respectively. Here, 𝜖 (·) is a linear function and 𝜃 (·) is a linear or
quadratic function depends on specific experimental data.

𝑓𝑎𝑐𝑐 =
1

𝑀

𝑀∑︁
𝑖=0

𝜃acc (𝑟𝑖 ) 𝜖acc (𝑠𝑖 ) (2)

𝑓net , 𝑓com =

𝑀∑︁
𝑖=0

𝜃net (𝑟𝑖 ) 𝜖net (𝑠𝑖 ) ,
𝑀∑︁
𝑖=0

𝜃com (𝑟𝑖 ) 𝜖com (𝑠𝑖 ) (3)

In the video analytics pipeline, the total energy consumed is the

sum of the energy consumed in the communication and computing

process, as shown in Equation 4. We use the total power, i.e., the

energy consumed by all video streams in 1 s, to compare the energy

efficiency of different configurations. Here, 𝛾 represent the trans-

mission energy consumption per bit (𝛾 = 0.5×10
−5

(J) is consistent

with existing work [34]). 𝜃𝑏𝑖𝑡 (𝑟𝑖 ) and 𝜃𝑒𝑛𝑔 (𝑟𝑖 ) are quadratic func-
tions that represent the data size (bits) and energy consumption (J)

of a video frame with resolution 𝑟𝑖 , respectively.

Video 1
Video 2
Video 3

Time Slots

Video 1+2
Video 1+3

jitter jitter

Figure 4: A delay jitter example due to poor scheduling.

𝑓𝑒𝑛𝑔 =

𝑀∑︁
𝑖=0

(𝛾𝜃𝑏𝑖𝑡 (𝑟𝑖 )𝜖bit (𝑠𝑖 ) + 𝜃𝑒𝑛𝑔 (𝑟𝑖 )𝜖eng (𝑠𝑖 )) (4)

The end-to-end latency of the video stream includes the com-

puting latency 𝑙𝑐𝑜𝑚 = 𝜃𝑙𝑐𝑜𝑚 (𝑟𝑖 ) and network transmission latency

𝑙𝑛𝑒𝑡 = 𝜃𝑏𝑖𝑡 (𝑟𝑖 )/𝐵𝑞𝑖 , denoted as Equation 5. Here, 𝑝𝑖 = 𝜃𝑙𝑐𝑜𝑚 (𝑟𝑖 )
is a quadratic function that represents the computing time of a

video frame with the resolution 𝑟𝑖 and 𝐵𝑞𝑖 represents the uplink

bandwidth of the edge server 𝑞𝑖 .

𝑓𝑙𝑡𝑐 =
1

𝑀

𝑀∑︁
𝑖=0

(𝜃𝑙𝑐𝑜𝑚 (𝑟𝑖 ) + 𝜃𝑏𝑖𝑡 (𝑟𝑖 )/𝐵𝑞𝑖 ) (5)

Constraint Formulation. To mitigate queuing delays induced

by computational overload, we add a constraint (denoted by Equa-

tion 6) for video analytics optimization problem, i.e., the total pro-

cessing time for all frames scheduled to a server (potentially orig-

inating from multiple video streams) within a 1-second interval

should be less than 1 second. Moreover, scheduling video streams

with distinct frequencies and processing time per frame to the

same server may lead to delay jitter (as shown in Figure 4), i.e., the

currently arrived frame has to be postponed because a previous

frame occupies the server. The delay jitter introduces additional

and irregular end-to-end latencies, so we introduce the constraint

2 (Equation 7) to ensure that the scheduling decision obtained by

solving the optimization problem will not cause delay jitter. Here,

𝑔𝑐𝑑 (·) represents the greatest common divisor of the periods of all

streams scheduled to the same node. We explain the rationality of

constraint 2 by Theorem 1 and its proof.

𝐶𝑜𝑛𝑠𝑡1 :

∑︁
{𝑖 |𝑞𝑖=𝑗 }

𝑝𝑖𝑠𝑖 ≤ 1 ∀ 𝑗 ∈ [1, . . . , 𝑁 ] (6)

𝐶𝑜𝑛𝑠𝑡2 :

∑︁
{𝑖 |𝑞𝑖=𝑗 }

𝑝𝑖 ≤ gcd({𝑇𝑖 }{𝑖 |𝑞𝑖=𝑗 } ) ∀ 𝑗 ∈ [1, . . . , 𝑁 ] (7)

Theorem 1. A sufficient condition of K periodic streams can be
scheduled on the same server with zero delay jitter can be stated as:

𝐾∑︁
𝑖

𝑝𝑖 ≤ gcd(𝑇1,𝑇2, ...,𝑇𝐾 ) (8)

Proof. Let 𝑔 = 𝑔𝑐𝑑 (𝑇1,𝑇2, ...,𝑇𝐾 ) and the start times 𝑜 (𝜏1) = 0

and 𝑜 (𝜏𝑘 ) =
∑𝑘−1

𝑖=1
𝑝𝑖 , 𝑘 ∈ [1, ..., 𝐾]. The stream 𝜏1 is executed in a

subset of the set 𝐼1 of of intervals, defined by [𝑙𝑔, 𝑙𝑔 + 𝑝1 − 1], 𝑙 ∈ Z,
and stream 𝜏𝑘 is executed in a subset of the set 𝐼𝑘 of intervals.

defined by [𝑙𝑔 +∑𝑘−1

𝑖=1
𝑝𝑖 , 𝑙𝑔 +

∑𝑘−1

𝑖=1
𝑝𝑖 + 𝑝𝑘 − 1], 𝑙 ∈ Z. If∑𝐾𝑖 𝑝𝑖 ≤ 𝑔

holds, 𝑙𝑔+∑𝑘−1

𝑖=1
𝑝𝑖 +𝑝𝑘 −1 ≤ 𝑙𝑔+𝑔−1, i.e., in the 𝑙th cycle of length

𝑔, the completion time of the last frame is less than the arrival time

of the first frame of the next cycle 𝑙 + 1. Hence, no intervals of
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Figure 5: The overall framework of our solution.

𝐼𝑘 , 𝑘 ∈ 1, .., 𝐾 overlap when

∑𝐾
𝑖 𝑝𝑖 ≤ 𝑔 holds, which proves the

sufficiency. □

4 Algorithm Design
This section describes our solution, PaMO, to multi-objective opti-

mization problem on edge video analytics scheduling, and its overall

framework is shown in Figure 5. Firstly, we fit outcome functions

of all performance and resource metrics based on the profiling data

and formulation in Section 3. We also propose a heuristic algo-

rithm to generate a scheduling decision that meets the computing

power and zero delay jitter constraints (𝐶𝑜𝑛𝑠𝑡1 in Equation 6 and

𝐶𝑜𝑛𝑠𝑡2 in Equation 7) while minimizing average communication

latency. Based on this scheduling algorithm, we employ a black-box

Gaussian process model to reconfigure the outcome function of

end-to-end latency. Secondly, PaMO explores the system preference

based on pairwise comparison of outcome vectors. The Gaussian

process model trained by comparison results is used to surrogate

the preference function of the system, and the EUBO acquisition

function is used to select more important outcome vectors for ac-

celerating the convergence of the training process. Finally, PaMO

solves the multi-objective problem of edge video analytics following

a revised Bayesian optimization framework. It iteratively updates

outcome and preference models and recommends better solutions

using an anti-noise acquisition function qNEI. Through iterative re-

finement, PaMO gradually converges towards the optimal solution

of the multi-objective optimization problem.

4.1 Heuristic Zero-jitter Scheduling
When the frame rate and resolution are known, the scheduling algo-

rithm finds a scheduling scheme that meets the computing power

(𝐶𝑜𝑛𝑠𝑡1 in Equation 6) and zero delay jitter constraints (𝐶𝑜𝑛𝑠𝑡2 in

Equation 7). Actually, we show that𝐶𝑜𝑛𝑠𝑡2 is a sufficient condition

for𝐶𝑜𝑛𝑠𝑡1 (Theorem 2), which means that the algorithm only needs

to ensure that the scheduling result satisfies 𝐶𝑜𝑛𝑠𝑡2.

Theorem 2. 𝐶𝑜𝑛𝑠𝑡2 is a sufficient condition for 𝐶𝑜𝑛𝑠𝑡1.

Proof. Let |{𝑖 |𝑞𝑖 = 𝑗}| = 𝐾𝑗 in 𝐶𝑜𝑛𝑠𝑡1 and 𝐶𝑜𝑛𝑠𝑡2, we need

to prove that when

∑𝐾𝑗

𝑖=0
𝑝𝑖 ≤ gcd(𝑇1, ...𝑇𝐾𝑗

) holds, ∑𝐾𝑗

𝑖=0
𝑝𝑖𝑠𝑖 ≤ 1

must also hold for all 𝑗 ∈ [1, ..., 𝑁 ]. From the definition of the

greatest common divisor, we know that for all 𝑘 ∈ [1, .., 𝐾 𝑗 ], the

following inequality is always true:

𝑔𝑐𝑑 (𝑇1,𝑇2, ...,𝑇𝐾𝑗
) ≤ 𝑚𝑖𝑛{𝑇1,𝑇2, ...,𝑇𝐾𝑗

} ≤ 𝑇𝑘

Furthermore, due to

∑𝐾𝑗

𝑖=0
𝑝𝑖 ≤ gcd(𝑇1, ...𝑇𝐾𝑗

) holds,
𝐾𝑗∑︁
𝑖=0

𝑝𝑖𝑠𝑖 =

𝐾𝑗∑︁
𝑖=0

𝑝𝑖

𝑇𝑖
≤

𝐾𝑗∑︁
𝑖=0

𝑝𝑖

𝑔𝑐𝑑 (𝑇1,𝑇2, ...,𝑇𝐾𝑗
) ≤ 1

This completes the proof of the theorem. □

The discretization of Const2 makes it challenging to be satisfied

in the conventional convex optimization process, so we design a

group-based heuristic algorithm motivated by Theorem 3 to proac-

tively generate a scheduling solution that aligns with the require-

ments of Const2. The overall workflow is shown in Algorithm 1.

Specifically, it first sorts all streams based on their periods in as-

cending order (line 1), and then computes each stream’s priority

according to the number of streams whose period is their period’s

divisor (line 2). The priority mechanism increases the probability

of finding a feasible schedule. Next, the algorithm adjusts the order

of the streams in ascending order of priority and get the final order

(line 3). We traverse all streams in the final order and allocate them

to their respective groups, ensuring that all streams within the same

group meet conditions (a) and (b) in Theorem 3 (line 5-19). Finally,
we solve a general assignment problem for minimizing the average

communication latency (line 20) by a classical Hungarian algorithm

to obtain optimal scheduling vector q.

Theorem 3. Suppose the minimum period of 𝐾 periodic streams
scheduled into the same server is 𝑇𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑇1, ...,𝑇𝐾 }. The con-
dition (a) 𝑇𝑖 = 𝑡 ∗ 𝑇𝑚𝑖𝑛 (𝑡 ∈ N+) for all 𝑖 ∈ {1, ..., 𝐾} and (b)∑𝐾
𝑖=1

𝑝𝑖 ≤ 𝑇min are sufficient for Const2.

Proof. If the condition (a) and (b) holds, we have𝑔𝑐𝑑 (𝑇1, ...,𝑇𝐾 ) =
𝑇𝑚𝑖𝑛 and

∑𝐾
𝑖=1

𝑝𝑖 ≤ 𝑇min = 𝑔𝑐𝑑 (𝑇1, ...,𝑇𝐾 ), i.e., Const2 is satis-

fied. □

4.2 Comparison-based Preference Learning
Considering the significant impact of system preferences on iden-

tifying the optimal solution within the Pareto frontier of multi-

objective optimization problems, as analyzed in Section 2, this sec-

tion delves into the precise modeling of system preferences, i.e., the

formulation of preference function. Compared with the traditional

preference function formula given by decision-makers who need to

have expert knowledge, our method is more user-friendly. It only

requires decision-makers to compare the income vector given by

the system in pairs, and build the preference function based on

Gaussian process according to the comparison results.

Preference Modeling. Assume that Y is the outcome space of

our video analytics problem, in which each element 𝒚 in Y is an

outcome vector consisting of the values of 𝑘 outcome functions,

i.e. 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑘 ). We choose 𝑉 pairs of outcome vectors

from the outcome space Y and asking decision-makers to compare

the two outcome vectors in each outcome pair for identifying the

better one that in line with their preferences. The comparison

results of decision-maker feedback can form a preference set P𝑉 ={
(𝒚 (1)𝑣 ≻ 𝒚 (2)𝑣 )

}𝑉
𝑣=1

where 𝒚 (1) ,𝒚 (2) ∈ Y and 𝒚 (1) ≻ 𝒚 (2) means
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Algorithm 1: Group-based heuristic scheduling

Input :A stream set T = {𝜏1, 𝜏2, . . . , 𝜏𝑀 },
𝜏𝑖 = {𝑇𝑖 , 𝑟𝑖 , 𝑝𝑖 }, a server set N = {𝑛1, 𝑛2 ..., 𝑛𝑁 }
and their uplink bandwidth 𝐵𝑛 𝑗

Output :The scheduling vector q = [𝑞1, 𝑞2, .., 𝑞𝑀 ], 𝑞𝑖 ∈ N
1 Sort all streams in T by 𝑇𝑖 in ascending order: T → T ′;
2 Compute the priority of each stream in set T ′:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝜏 ′
𝑖
) = 𝐼𝑖 =

∑𝑖−1

𝑗=1
I(𝑇𝑖%𝑇𝑗 = 0);

3 Sort all streams in T ′ by 𝐼𝑖 in ascending order: T′→T′′;
4 Initial the stream group set

G = {𝐺1, ..,𝐺𝑁 },𝐺 𝑗 = 𝜙 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ [1, ..., 𝑁 ];
5 for 𝜏 ′′

𝑖
= {𝑇 ′′

𝑖
, 𝑟 ′′
𝑖
, 𝑝′′
𝑖
} ∈ T ′′ do

6 for 𝐺 𝑗 ∈ G do
7 if 𝐺 𝑗 = 𝜙 then
8 𝐺 𝑗 = 𝐺 𝑗 ∪ 𝜏 ′′𝑖
9 end

10 𝑇𝑚𝑖𝑛 = min{𝑇𝑘 |𝜏𝑘 ∈ 𝐺 𝑗 };
11 if 𝑇 ′′

𝑖
= 𝑡 ∗𝑇𝑚𝑖𝑛 and

∑
𝜏𝑘 ∈𝐺 𝑗

𝑝𝑘 + 𝑝′′𝑖 ≤ 𝑇𝑚𝑖𝑛
then

12 𝐺 𝑗 = 𝐺 𝑗 ∪ 𝜏 ′′𝑖 ;
13 break;
14 end
15 if 𝐺 𝑗 = 𝐺𝑁 then
16 No feasible grouping scheme;

17 end
18 end
19 end
20 Mapping groups G to servers N by solving a general

assignment problem to optimize the following objective:

minq
∑
𝐺 𝑗 ⊂G

∑
𝑖∈𝐺 𝑗

𝜃𝑏𝑖𝑡 (𝑟𝑖 )
𝐵𝑞𝑖

;

21 return q = [𝑞1, 𝑞2, .., 𝑞𝑀 ]

the decision-maker prefers 𝒚 (1) to 𝒚 (2) . Following previous works

[6, 17], we use the following likelihood function to capture the joint

probability of the preference relation 𝒚 (1)𝑣 ≻ 𝒚 (2)𝑣 :

𝑝 (P | 𝒈) =
𝑉∏
𝑣=1

𝑝

(
𝒚 (1)𝑣 ≻ 𝒚 (2)𝑣 | 𝑔

(
𝒚 (1)𝑣

)
, 𝑔

(
𝒚 (2)𝑣

))
(9)

with

𝑝

(
𝒚 (1)𝑣 > 𝒚 (2)𝑣 | 𝑔

(
𝒚 (1)𝑣

)
, 𝑔

(
𝒚 (2)𝑣

))
= Φ

©«
𝑔

(
𝒚 (1)𝑣

)
− 𝑔

(
𝒚 (2)𝑣

)
√

2𝜆

ª®®¬
where 𝜆 is a hyperparameter and Φ is the cumulative distribution

function of the standard normal distribution.

Then we can formulate the posterior probability of 𝒈 based on

Bayes’ theorem, 𝑝 (𝒈 | P) = 𝑝 (𝑔)𝑝 (P |𝒈)
𝑝 (P) . Finally, Laplace approxi-

mation is used to find a GP approximation of the function 𝒈, which
is characterized by a mean function 𝝁𝑔 and a covariance function

𝑲𝑔 , i.e., 𝒈 ∼ 𝐺𝑃 (𝝁𝑔,𝑲𝑔). We recommend readers to see more details

about formula derivation in [6].

Efficiency Improvement. The choice of comparison pairs sig-

nificantly impacts the convergence rate during the training of

Gaussian process models. To maximize training efficiency, our goal

is to identify the optimal comparison pair within the intricate out-

come space at each iteration of model training.

Recall that we need to recommend the best outcome vector𝒚∗ for
the decision-maker tomaximize benefit, i.e.,𝒚∗ ∈ argmax𝒚∈Y E𝑣 [𝑔(𝒚)]
where E𝑉 is the conditional expectation given P𝑉 (E𝑉 [·] = E[· |
P𝑉 ]). Therefore, we can quantify the difference in (expected) bene-

fit obtained by the decision-maker due to the additional comparison

pair (𝒚
1
,𝒚

2
) by the following formula:

𝐴𝐹
(
𝒚

1
,𝒚

2

)
= E𝑉

[
max

𝒚∈Y
E𝑉+1 [𝑔(𝒚)] − max

𝒚∈Y
E𝑉 [𝑔(𝒚)]

]
(10)

with

E𝑉+1 [·] = E
[
· | P𝑉 ∪ {𝒚1

≻ 𝒚
2

𝑜𝑟 𝒚
1
≺ 𝒚

2
}
]

Consequently, we can select the outcome vector pair that maxi-

mizes the acquisition function 𝐴𝐹 (𝒚
1
,𝒚

2
) for the next iteration of

model training. Furthermore, to overcome the difficulty of maxi-

mizing the acquisition function due to the nested structure of 𝐴𝐹

function in Equation 10, we use the expected benefit of the best

option (EUBO) that is denoted in Equation 11 to replace Equation

10, which has been proved to be approximately equivalence [17].

EUBO

(
𝒚

1
,𝒚

2

)
= E𝑉

[
max

{
𝑔
(
𝒚

1

)
, 𝑔

(
𝒚

2

)}]
(11)

4.3 Bayesian Optimization Solution
In this section, we describe the overall process for determining

the optimal configuration and scheduling decision that aligns with

system preferences in the context of multi-objective optimization

problems for video analysis, as illustrated in Algorithm 2. Our core

idea involves leveraging the Bayesian optimization framework to

iteratively refine both the outcome and preference models and rec-

ommend better solutions. We can reduce the number of iterations

that converge to the optimal solution by carefully choosing the

acquisition function, thereby mitigating the resources and time

consumption expended on collecting outcome data and engaging

with decision-makers to obtain comparison results.

Specifically, we first obtain outcome samples under a few config-

urations and a few comparison samples of outcome vectors through

profiling and decision-maker interaction to initialize the outcome

and preference model. Then, we use the batch Noisy Expected

Improvement (𝑞𝑁𝐸𝐼 ) acquisition function to generate the current

optimal recommended solution. We observe the actual outcome

vector on this new solution and new comparison results through

experiments and decision-maker queries for updating the outcome

and preference model. The above process is iterated continuously

until the optimal solution converges or reaches the maximum num-

ber of iterations.

In our problem, the design of the acquisition function necessi-

tates addressing two key challenges: (1) Due to the unavailability

of direct observations of the benefit value closely tied to system

preferences, we rely on the preference model fitted by Gaussian

process to calculate the benefit value with noise. So the acquisition

function is required to identifying the optimal solution based on
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Algorithm 2: BO-based configuration decision

Input :A stream set T = {𝜏1, 𝜏2, . . . , 𝜏𝑀 },
a server set N = {𝑛1, 𝑛2 ..., 𝑛𝑁 },
convergence threshold 𝛿 ,𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑁𝑢𝑚

Output :The configuration vector

𝒙 = [𝑥1, 𝑥2, .., 𝑥𝑀 ], 𝑥𝑖 = (𝑠𝑖 , 𝑟𝑖 )
1 (1) Outcome Function Fitting:
2 Initialize the configuration set X = {𝒙𝑢 }𝑈𝑢=1

;

3 Obtain the outcome set Y = {𝒚𝑢 }𝑈𝑢=1
on the configuration

set X by profiling and Algorithm 1, where
𝒚𝑢 = [𝑦𝑎𝑐𝑐 , 𝑦𝑐𝑜𝑚, 𝑦𝑛𝑒𝑡 , 𝑦𝑒𝑛𝑔, 𝑦𝑙𝑐𝑡 ] ;

4 Fit the outcome functions 𝒇
0
= [𝑓𝑎𝑐𝑐 , 𝑓𝑐𝑜𝑚, 𝑓𝑛𝑒𝑡 , 𝑓𝑒𝑛𝑔, 𝑓𝑙𝑐𝑡 ]

by GP models based on the data set

D𝑈 = {(𝒙𝑢 ,𝒚𝑢 ) |𝒙𝑢 ∈ X,𝒚𝑢 ∈ Y}𝑈𝑢=1
;

5 (2) system preference Modeling:
6 Constructing pairwise preference dataset P𝑉 :
7 for 𝑡 = 1, 2, ...,𝑉 do
8 (𝒚𝑡

1
,𝒚𝑡

2
) ← arg max(𝒚,𝒚 ) ∈Y×Y EUBO

(
𝒚

1
,𝒚

2

)
;

9 P𝑡+1 ← P𝑡 ∪ {𝒚𝑡
1
≻ 𝒚𝑡

2
𝑜𝑟 𝒚𝑡

1
≺ 𝒚𝑡

2
}

10 end
11 Learning preference model 𝒈

0
∼ 𝐺𝑃 (𝝁𝑔,𝑲𝑔) over P𝑉

12 (3) Best Configuration Solving:
13 Initialization: 𝒇 = 𝒇

0
, 𝒈 = 𝒈

0
, 𝑧𝑝 = 0;

14 while true do
15 𝒙𝑏 = [𝒙1, ..., 𝒙𝑏 ] ← arg max𝒙1:𝑏 ∈X𝑏 𝑞𝑁𝐸𝐼 (𝒙,𝒇 ,𝒈);
16 𝒚𝑏 = [𝒚

1
, ...,𝒚𝑏 ] ← 𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒_𝑎𝑛𝑑_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝒙𝑏 ) ;

17 Compute benefit value: 𝑧𝑏 = [𝑧1, ..., 𝑧𝑏 ] = 𝒈(𝒚𝑏 );
18 Update 𝒇 over the dataset D𝑈 ∪ {(𝒙𝑖 ,𝒚𝑖 )}𝑏𝑖=1

;

19 Update 𝒈 over the dataset P𝑉+𝑏 ;
20 Let 𝑧 = max(𝑧𝑏 );
21 if |𝑧 − 𝑧𝑝 | < 𝛿 or 𝐼𝑡𝑒𝑟𝑁𝑢𝑚 ≥ 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑁𝑢𝑚 then
22 return 𝒙′

23 end
24 𝑧𝑝 ← 𝑧;

25 𝐼𝑡𝑒𝑟𝑁𝑢𝑚 ← 𝐼𝑡𝑒𝑟𝑁𝑢𝑚 + 1;

26 end

noisy observed data. (2) The acquisition function needs to find the

optimal solution in the exponential search space of the problem,

and each iteration during this process introduces time overhead due

to observations or function calculations. A good acquisition func-

tion should speed up the iterative process to reduce the response

time of the decision. For the above reasons, we choose the qNEI

acquisition function defined by Equation 12 in our problem. The

𝑞𝑁𝐸𝐼 acquisition function simultaneously recommends 𝑏 candidate

points in each iteration to facilitate the system to observe benefit

values parallelly and maximize the expected improvement with

respect to the best value observed so far. See prior work [15] for

the detailed derivation of the 𝑞𝑁𝐸𝐼 acquisition function.

𝑞𝑁𝐸𝐼 (𝒙,𝒇 ,𝒈) =
∫
𝒈
𝛼EI

(
𝒙 | 𝑧∗ = max

(
𝑧𝑈

))
𝑝 (𝒈 | 𝑫𝑈 ) 𝑑𝒈 (12)

with

𝛼EI

(
𝒙 | 𝑧∗

)
= E𝑉

[
max

(
0,max(𝑧𝑖 ) − 𝑧∗

)
| 𝑧𝑖 ∼ 𝑔(𝒇 (𝒙𝑖 ))

]
where 𝑧𝑈 = {𝑔 (𝑓 (𝒙𝑢 ))}𝑈𝑢=1

represents the observed benefit values

over the dataset D𝑈 , and 𝒙 = {𝒙𝑖 }𝑏𝑖=1
is the set of 𝑏 candidate

points.

5 Evaluation
In this section, we evaluate the performance of PaMO based on

video object detection workloads, and compare its overall benefits

against two single-objective optimization baselines. We implement

our algorithms in python 3.8 and BoTorch library [3].

5.1 Experimental Setup
Hardware configuration. We use four Jetson XAVIER NX de-

vices with 6-core CPUs@1.9 GHz, Volta GPU@1100 MHz, and 8GB

RAM as edge servers and emulate a group of cameras on a desktop

computer with 6 Intel i7-8700 CPUs@3.2 GHz, NVIDIA GeForce

GTX1060 and 16GB memory to generate video streams. All ma-

chines run Ubuntu 20.04.6 LTS system and are connected to a 450

Mbps TP-LINK Router via WiFi.

Workload configuration.We implement video transmission

and analysis between video sources and edge servers based on the

Triton Inference Server framework [24]. Specifically, we develop

Triton Client code on the desktop to dynamically adjust the frame

rate and resolution of video streams, compress the streams, and

transmit them to the target server based on decisions returned by

the algorithm. On the server side, we leverage Triton’s TensorRT

backend to execute YOLOv8 detection models [27] trained on the

COCO dataset. All videos used in the experiment are sourced from

the MOT16 dataset [21]. We use mean average precision (mAP) to

evaluate the accuracy of the object detection task.

System benefitmetric.We define the system benefit for evalua-

tion as the negative weighted L1 distance between actual outcomes

and utopian outcomes of all optimization objectives, which is a

higher-is-better metric as defined in Equation 13.

𝑈 = −∥𝒚 −𝒚∗∥1 ≜ −
∑︁

𝑖∈{𝑙𝑐𝑡,𝑎𝑐𝑐,𝑛𝑒𝑡,𝑐𝑜𝑚,𝑒𝑛𝑔}
𝑤𝑖 |𝑦𝑖 − 𝑦∗𝑖 | (13)

where 𝒚 is the normalized outcome vector. 𝒚∗ is the utopian out-

come vector, which consists of the best outcomes obtained by single-

objective optimization. The utopian outcome vector is unattainable

in practice due to conflicts between different objectives. We adjust

the weight vector 𝑤 = [𝑤𝑖 ]𝑖∈{𝑙𝑐𝑡,𝑎𝑐𝑐,𝑛𝑒𝑡,𝑐𝑜𝑚,𝑒𝑛𝑔} to construct di-

verse preference functions, facilitating the comparison of various

solutions.

Baselines.We compare PaMO with the following baselines:

• JCAB [34] uses Lyapunov optimization and First-Fit algo-

rithm to make video configuration (resolution and frame

sampling rate) and scheduling decision. It targets to maxi-

mize the linear weighting function of accuracy and energy

consumption.

• FACT [19] uses block coordinate descent (BCD) algorithm

to minimize the weighted sum of latency and accuracy by

adjusting resolution and server allocation. This method do

not consider energy and network bandwidth consumption.
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Figure 6: Normalized benefit 2comparison across different preference functions.

• PaMO+: a variant of PaMO that uses true preference func-

tions (i.e., Equation 13 in our experiments) to find optimal

configuration and scheduling solutions.

• 𝑃𝑎𝑀𝑂𝑞𝑈𝐶𝐵/𝑞𝑆𝑅/𝑞𝐸𝐼 : a variant of PaMO that replaces the

acquisition function 𝑞𝑁𝐸𝐼 with the batch upper confidence

bound (𝑞𝑈𝐶𝐵), the batch simple regret (𝑞𝑆𝑅), and the batch

expected improvement (𝑞𝐸𝐼 ). All acquisition functions are

implemented based on Monte-Carlo sampling.

5.2 System Benefit Comparison
Across different preference functions. We construct different

system preference functions by adjusting each weight in Equation

13 to (0.2, 0.4, 1.6, 3.2) while keeping the remaining weights at 1.

The weights of the corresponding metrics in the optimization ob-

jectives of the JCAB and FACT methods are adjusted accordingly.

PaMO fits the preference function by comparison-based preference

learning methods. The experiment analyzes 8 video streams on

five servers. Each method undergoes three repetitions of testing

to capture the average value. We normalize the benefit values of

various methods using the solutions identified by PaMO+ as bench-

marks. The line data in Figure 6 illustrates that PaMO can attain

system benefit close to optimal, with errors ranging from 1.02% to

11.26%. Compared with state-of-the-art methods, JCAB and FACT,

PaMO enhances system benefit by 3.9% to 42.3% and 0.42% to 26.5%

across diverse system preference weights, respectively. Further-

more, the different colored shades in Figure 6 show that the benefit

ratio of different objectives. The PaMO solution is closer to the

real preference distribution of the system (shown as the solution of

PaMO+) than the JCAB and FACT solutions. This result indicates

that PaMO can accurately capture the system preference across

different preference functions and achieve a higher system benefit

than the single-objective optimization methods.

Across different server and video numbers. We evaluate

the scheduling performance of PaMO and baselines by two sets of

experiments with different server and video numbers. We use trace

data to emulate more than four servers. The preference weight of

these experiments is set to 1 to reduce the influence of preference

learning error on system benefit. The first set of experiments fix the

number of video streams at 10, varying the number of servers from

2
Normalized benefit is calculated by𝑈𝑁𝑂𝑅𝑀 = 1 − 𝑈 −min(𝑈 )

max(𝑈 )−min(𝑈 ) , where max(𝑈 )
is the benefit value of PaMO+ and min(𝑈 ) = − 1

2

∑
𝑖∈{𝑙𝑐𝑡,𝑎𝑐𝑐,𝑛𝑒𝑡,𝑐𝑜𝑚,𝑒𝑛𝑔} 𝑤𝑖 .
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Figure 7: Normalized benefit comparison under different
server and video number.

5 to 9. The second set of experiments fix the number of servers at 5,

increasing the number of video streams from 7 to 11. We randomly

select bandwidth values for servers from (5Mbps, 10 Mbps, 15 Mbps,

20Mbps, 25Mbps, 30Mbps) to simulate diverse real-world scenarios.

The average normalized benefit of three repeated experiments under

each configuration is shown in Figure 7. Specifically, compared with

JCAB and FACT, PaMO enhances the overall benefit by 13.6% to

53.9% and 6.5% to 16.6% across different server and video numbers,

respectively. The decrease in system benefit of PaMO, ranging from

0.0006% to 1.54% compared to PaMO+, stems from the fitting error

of the preference function.

5.3 Component Performance Analysis
Outcome prediction performance. We use the coefficient of

determination, i,e, 𝑅2 = 1−(∑𝑖 (𝑦𝑖−𝑦𝑖 )2)/(∑𝑖 (𝑦𝑖−𝑦)2), to evaluate
the prediction error of our GP-based outcome models. The number

of samples in the training set starts at 200 and increases by 100 until

it reaches 500. The pre-trained models over the training set predict

the outcome of 20 test samples composed of randomly selected

resolution and the frame sampling rate. We repeat the prediction

process ten times and plot the results in Figure 8. The figure shows

that the 𝑅2
gradually approaches one as the training set increases,

which indicates that our outcome models predict more accurately.

Apart from computation, other performance prediction models

can achieve a prediction error of less than 10% and 5% when the

number of training samples reaches 400 and 600, respectively. The

prediction model of computation exhibits an average error below

10% when the number of training samples comes to 600.

Preference prediction performance. The output of our prefer-
ence model is the relative value of the benefit and cannot be directly
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compared with the actual benefit value outputted by the true pref-

erence function. To assess accuracy, we construct a test dataset

with 500 samples, each of which contains two outcome vectors,

denoted as

{
(𝑦𝑖

1
, 𝑦𝑖

2
)
}

500

𝑖=1
. We use the real preference function and

the preference model to calculate the benefit value of each sample,

denoted as 𝑧1, 𝑧2 and 𝑧1, 𝑧2, respectively. Then, we calculate the pre-

diction accuracy by 1/500

∑
500

𝑖=1
{1| (𝑧𝑖

1
> 𝑧𝑖

2
𝑎𝑛𝑑𝑧𝑖

1
> 𝑧𝑖

2
)𝑜𝑟 (𝑧𝑖

1
<

𝑧𝑖
2
𝑎𝑛𝑑𝑧𝑖

1
< 𝑧𝑖

2
)}. We evaluate various pre-trained preference models

with multiple sizes of training sets ranging from 3 to 27. We repeat

the experiment ten times on different test datasets. The results in

Figure 9 shows that the preference model’s prediction error is less

than 10% when the number of training samples reaches 18.

5.4 Sensitivity Analysis
Impact of weight on baseline methods.We evaluate whether

the single-objective methods, JCAB and FACT, can learn system

preferences by adjusting weights through two sets of experiments

with configurations of "5 servers, 8 videos" and "6 servers, 10 videos."

In each experiment set, the weight of one objective is adjusted in-

crementally from 0.05 to 5, while the weight of another objective

remains constant at 1. Since the PaMO method uses the Gaussian

process model to fit the preference function (with all weights set to

1), it is independent of weight parameters, so weight changes do not

affect the benefit value. Figure 10(a) shows that although the bene-

fit values of the JCAB and FACT methods fluctuate with changes

in weight parameters, they consistently fall short of reaching or

surpassing the benefit values of the PaMO and PaMO+ methods.

This observation indicates that, for the multi-objective optimization

problem, the preference function with linear weighting fails to ac-

curately capture system preference across different objectives, even

with intricate weight tuning. This imprecise characterization will

result in deviations of the corresponding single-objective solution

algorithms from the optimal value preferred by the system.

Impact of termination threshold on all methods. In a simi-

lar experimental configuration with Figure 10(a), we increase the

termination threshold 𝛿 from 0.02 to 0.2 to compare the perfor-

mance change of the different methods, where FACT and JCAB

adopt the weights that perform best in Figure 10(a). The result in

Figure 10(b) shows that the benefit derived from the PaMO method
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Figure 10: Ablation experiments about baseline weights and
termination thresholds. n5v8 represents the configuration
of 5 servers and 8 videos.

is always higher than that obtained by the baseline methods and

exhibits less fluctuation with the threshold. Conversely, the base-

line methods are sensitive to the termination threshold, requiring

additional tuning efforts when applied in practical scenarios.

6 Related Work
Adaptive Video Analytics. Data reduction is an effective way to

alleviate the resource pressure brought by video analytics work-

loads to the edge environment. The exiting works usually adjust

some video parameters like frame rate and resolution [13, 19, 32–

34], or encode/send only the important part of frames involving

new objects [5, 7, 16, 18] to reduce data transmission and compu-

tation consumption. Another way to reduce data is to use some

cheap models to identify important regions [16] or inference in

advance on some frames with salient features [14] on the cam-

era with some low-power GPUs/CPUs. Yoda [31] classifies these

adaptive methods and implements a video analytics benchmark to

evaluate and discuss the complex interaction between the perfor-

mance of these methods and video characteristics. Our solution

currently uses frame rate and resolution adjustment solutions that

are universal to most video streams, and can be followed by adap-

tive encoding and segmented inference to further improve video

analysis performance and resource efficiency.

Multi-objective Optimization. We focus on the preference

function formulation of a multi-objective optimization problem,

which reflects priorities for various objectives and helps the solver

identify a unique optimal solution within the Pareto frontier. The

most common form of preference function is the linearly weighted

sum of all objective functions. In the existing literature, there are

a variety of weight definitions [10], such as Equal weights, Rank

order centroid (ROC) weights, Rank-sum (RS) weights, and Pseudo-

weights. However, this fixed weight can not accurately capture the

system’s preference for different objectives, so the problem’s solu-

tion may deviate from the expected optimal value. The preferential

learning method [4, 9, 26], by contrast, has become popular due

to its flexibility advantage. This method asks the decision maker

to express their preference on a set of outcome vectors and then

trains a surrogate model of the preference function based on these

preference data. In this paper, we integrate the preference learn-

ing process into the Bayesian optimization framework so that the

system preference can better guide the solution search process.

Periodic Scheduling Algorithms. Periodic scheduling prob-
lems (PSPs) are usually discussed in modern real-time systems like
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automotive and avionics. It targets to find a schedule for a set of

periodic tasks on single or multiple hardware resources to meet

their real-time requirements with different level’s jitter constraints

[22]. The non-preemptive PSPs focused on this paper, which has

been proved as a strongly NP-hard problem [12], can be modeled as

an Integer Linear Programming (ILP) problem [28], a Constraints

Programming (CP) problem [23] or a Satisfiability Modulo The-

ories (SMT) problem [25]. The existing work tends to use some

heuristic [23] or meta-heuristic [20] algorithms to find feasible so-

lutions within reasonable time. However, these algorithms cannot

be directly applied to our problem because they do not consider

minimizing communication latency. Our proposed algorithm adopts

period-aware grouping and Hungarian algorithm to solve ensures

zero jitter delay and latency minimization.

7 Conclusion
This paper shows that Bayesian optimization-drivenmulti-objective

schedulers can provide considerable overall benefits over task per-

formance and resource efficiency for video analytics workloads

at the edge by adjusting video configuration and server alloca-

tion. Our solution, PaMO, notably outperforms the state-of-the-art

single-objective schedulers by accurately capturing the influence of

various optimization objectives on system benefit. PaMO efficiently

identifies optimal solutions by Bayesian optimization iteration with

a zero-jitter heuristic scheduling algorithm and an anti-noise acqui-

sition function. This preference-aware multi-objective method will

be essential in other performance optimization problems with zero-

sum game characteristics. In the future, we aim to delve deeper into

the theoretical analysis of Bayesian optimization methods grounded

in preference learning. Meanwhile, we are keen on exploring other

user-friendly methods for capturing the system’s preferences in

diverse optimization scenarios.
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