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Abstract—The complexity and variability of streaming data
have brought a great challenge to the elasticity of the data
processing systems. Streaming systems, such as Flink and Storm,
need to adapt to the changes of workload with auto-scaling to
meet the QoS requirements while saving resources. However, the
accuracy of classical models (such as a queueing model) for QoS
prediction decreases with the increase of the complexity and
variability of streaming data and the resource interference. On
the other hand, the indirect metrics used to optimize QoS may
not accurately guide resource adjustment. Those problems can
easily lead to waste of resources or QoS violation in practice.

To solve the above problems, we propose AuTraScale, an auto-
mated and transfer learning auto-scaling solution, to determine
the appropriate parallelism and resource allocation that meet
the latency and throughput targets. AuTraScale uses Bayesian
optimization to adapt to the complex relationship between re-
sources and QoS, minimizing the impact of resource interference
on the prediction accuracy, and a new metric that measures
the performance of operators for accurate optimization. Even
when the input data rate changes, it can quickly adjust the
parallelism of each operator in response, with a transfer learning
algorithm. We have implemented and evaluated AuTraScale on
a Flink platform. The experimental results show that, compared
with the state-of-the-art method like DRS and DS2, AuTraScale
can reduce 66.6% and 36.7% resource consumption respectively
in the scale-down and scale-up scenarios while ensuring QoS
requirements, and save 13.5% resource on average when the
input data rate changes.

Index Terms—Streaming system, Auto-scaling, Bayesian opti-
mization

I. INTRODUCTION

Streaming data is playing an increasingly important role.

To deal with the streaming data that arrives at the processing

system at a fast, and time-varying rate, some stream processing

frameworks have emerged, such as Flink [1], Spark [2], and

Storm [3]. As the input data rate changes frequently, the

elasticity becomes a critical attribute in a streaming system,

which needs to adjust the amount of allocated resources in a

timely manner to adapt to workload changes.
Usually, the resource allocation in a streaming system is

highly correlated with the system-level or application-level

parallelism parameters. Traditionally, those parameters are set

by manual tuning, which takes too much time and easily

results in sub-optimal configurations. Therefore, automatic on-

demand scaling technologies have become necessary to find

optimized configurations avoiding both resource waste and

QoS violation.
In the past few years, many auto-scaling solutions have

been proposed for streaming system elasticity. Among them,

the solutions to meet the latency demand mainly rely on the

prediction ability of the queueing models [4]–[6]. But their

prediction accuracies and convergence rates can be signifi-

cantly affected when stream processing jobs co-run on the

same machine and interfere with each other. The auto-scaling

solutions to meet the throughput demand are usually based on

some indirect metrics such as backpressure (or congestion) [7]

[8], queue size [7] [9], and observed rate [8], [10]–[13]. These

metrics can not represent the true processing performance of

operator instances, which may lead to inaccurate or incorrect

decision-making. The recently proposed auto-scaling solutions

based on the dataflow model, notably DS2 [14], can optimize

throughput efficiently by analyzing the true processing rates of

operator instances. However, their approach of determining the

parallelism assumes the processing performance of an operator

linearly increases with the number of its instances, which may

become inaccurate when the increased instances lead to more

inference. In addition, most of the existing methods do not

adjust their models online, and thus the models might be

inaccurate at some moments during the long-running of stream

processing, e.g., when the data rate significantly changes.

Therefore, we propose AuTraScale, an automated and trans-

fer learning solution for streaming system auto-scaling. It finds

the optimal configuration of parallelism parameters quickly

and accurately to guarantee meeting multiple performance

requirements, and can continuously optimize the accuracy on-

line. AuTraScale provides four key features. First, AuTraScale

uses the Gaussian process to model the relationship between

the QoS and operator parallelism. In contrast to a queueing

model, the Gaussian process model can cover the impact of

interference and avoid accuracy degradation. Second, to opti-

mize the model accuracy continuously, AuTraScale uses the

Bayesian optimization method to iteratively update the model,

and recommends the optimized configuration in time. Third,

AuTraScale uses the transfer learning method to accelerate the

convergence of optimal configuration at a new rate of data.

Fourth, it uses the true processing rate metric to optimize

throughput more accurately and reduce the pending time of

data before being processed.

We implement and evaluate AuTraScale based on the Flink

framework. Compared with the state-of-the-art method, Au-

TraScale reduces 66.6% and 36.7% resource usage respec-

tively in the scale-down and scale-up scenarios while ensuring

QoS requirements and save 13.5% resource on average when

the data rate changes. Our main contributions in this work are
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as follows:

• We abstract the relationship between the parallelism and

QoS in streaming systems to a Gaussian process model,

which is trained by the data containing the interference

due to resource contention, so the prediction results can

be more accurate.

• We propose an automated learning auto-scaling solution

based on Bayesian optimization. It iteratively updates

the Gaussian process model with a scoring function, to

dynamically evaluate the impacts of different parallelism

parameters on the overall performance. It also uses an

acquisition function to trade off between exploitation and

exploration.

• We propose a transfer learning algorithm to make full

use of the trained model to find the optimal configuration

quickly at a new rate of data. It greatly reduces the costs

of training a new model.

The rest of the paper is organized as follows. In Section

II, we discuss the challenges and opportunities of resource

allocation in the streaming system. Then, we present the details

of AuTraScale in Section III and an overview of the system

architecture in Section IV. Experimental results are presented

and analyzed in Section V. We discuss related work in Section

VI and conclude the paper in Section VII.

II. MOTIVATION

In this section, we identify the challenges of auto-scaling in

current streaming systems via case studies, and introduce the

opportunities brought by the Bayesian optimization algorithm

to address these challenges.

A. Case Studies and Challenges

Different operator tasks in the streaming system cannot

be completely isolated, so resource contention is inevitable.

Therefore, the performance of a job (e.g., the throughput) may

not be linearly related to the amount of resources allocated to

it. We conduct a few experiments on a Flink cluster to explore

the complexity of this relationship and discuss its challenges

to auto-scaling.

CASE 1: Fixed parallelism, increasing data rate.
We run a WordCount Streaming job on the Flink cluster,

whose data come from Kafka. The parallelism of each operator

is set to 2 and remains the same. The input data rate starts

from 100k records/s and increases every 10 minutes by 50k

records/s. We use Kafka metrics and Flink metrics to obtain

relevant runtime information. Fig. 1(a) shows the changes in

both the input data rate and throughput, and Fig. 1(b) shows

the changes in the end-to-end latency in Flink and the data lag

in Kafka during the experiment.

Observation 1: When the input data rate increases and

exceeds the upper bound of the throughput with the fixed

parallelism configuration, data are accumulated in Kafka, and

the end-to-end latency in Flink increases.

As shown in Fig. 1(a), when the input data rate is 100k

records/s, 150k records/s, or 200k records/s, the throughput

of the job can meet the input data rate and there is no data

accumulation in the Kafka. In Fig. 1(b), the average end-to-

end latency temporarily peaks when the job just starts and

then it gradually flattens out. When the input data rate reaches

250k records/s, the job throughput begins to lag behind for

a short time. The data begin to accumulate in Kafka, and

the end-to-end latency begins to increase. Then the input

data rate increase to 300k records/s, which is significantly

greater than the processing capacity of the fixed parallelism

configuration, while the throughput of the job still maintains

at 250k records/s. The growth rate of the accumulated data

in Kafka and the average end-to-end latency of data in Flink

further increase until the test ends at the 50th minute.

(a) Throughput (b) Latency and data lag

Fig. 1. The running results of the WordCount Streaming job with the
fixed parallelism and increasing data rate. Parallelism under-provisioning
leads to non-trivial data lag and end-to-end latency.

This case shows that it is necessary to adjust the parallelism

configuration as well as the resource allocation when the data

rate changes. Lack of resources will result in data processing

lag and increased latency, while redundant resources can

be wasted if the data rate decreases. However, dynamically

allocating resources for jobs is challenging, as shown by

another set of our experiments as follows.

CASE 2: Fixed data rate, increasing parallelism.
The experiment consists of six independent small tests. The

experimental environment is the same as CASE 1, except for

that the input data rate in each test maintains at about 300k

records/s, and the operator parallelism in the 6 small tests is

(1, 2, 3, 4, 5, 6) respectively. The results are shown in Fig. 2.

Observation 2.1: The relationship between operator paral-

lelism and job throughput is not linear.

In Fig. 2(a), in the first three sets of tests, the parallelism

is 1, 2, and 3, but the corresponding throughput is about 150k

records/s, 250k records/s, and 275k records/s respectively.

The multiplying growth of parallelism does not provide the

proportional increase in throughput. The reasons for this

phenomenon can be synchronization and resource competition

between different operator instances.

Observation 2.2: The appropriate parallelism brings latency

benefits, and a higher parallelism may not be better.

Comparing the latency between the first three tests and

the last three tests in Fig. 2(b), we find that improving the

parallelism is helpful to reduce the latency and data lag on

the whole. However, the latter two tests (The latencies are 100

ms and 125 ms respectively) also indicate that the increase of

parallelism may increase communication cost [15] and thus

increase the latency.
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(a) Throughput (b) Latency and data lag

Fig. 2. The running results of the WordCount Streaming job with
the fixed data rate and increasing parallelism. p represents the operator
parallelism. 1) There is a nonlinear relationship between the parallelism and
the throughput. 2) The appropriate parallelism brings latency benefit, but a
higher parallelism may not gain lower latency.

The relationship between the parallelism (resource alloca-

tion) of operators, latency, and throughput is greatly com-

plicated by synchronization, resource contention, communi-

cation, and system scheduling policies. The main challenge

to identify the appropriate parallelism configuration when

the workload changes is how to deal with this unknown

relationship.

B. Opportunities

To deal with the above challenges, we need a method

that can capture the unknown relationship between resource

allocation and QoS metrics (e.g., throughput and latency), and

recommend the most appropriate parallelism configuration for

the application. Bayesian optimization (hereinafter referred to

as “BO”) is what we need. First, it uses the surrogate models,

such as Gaussian process regression and random forests, to

approximate the real relationship, and does not require the

specific mathematical formula about the objective function

and the input variables. Second, the goal of BO is to find the

input variables that optimize the objective function with as few

rounds of executions as possible. This is also consistent with

the goal of minimizing reconfiguration overheads caused by

scaling decisions in streaming systems. Therefore, this black-

box method to solve optimizing objective functions is very

suitable for auto-scaling scenario in the streaming system.

Mathematically, Bayesian optimization can be expressed by

the following formula:

x∗ = arg max
x∈A⊂Kd

f(x) (1)

AuTraScale takes the parallelism of each operator as the

input variable x, and takes a scoring function that quantifies the

comprehensive benefits of service quality and resource usage

with the given parallelism as the objective function f . The

goal of AuTraScale is to find the most profitable parallelism

configuration scheme to maximize the scoring function in

the minimum number of iterations. In this paper, Bayesian

optimization also involves the selection of the surrogate model,

acquisition function and the initial training data, as elaborated

in Section III.

III. MODEL AND ALGORITHM DESIGN

AuTraScale optimizes the parallelism configuration with

Bayesian optimization and transfer learning, based on the

data flows across the directed acyclic graph (DAG) of the

stream processing job. The Bayesian optimization algorithm

can iteratively update benefit model, which quantifies the

comprehensive benefit of QoS and resource usage given the

complicated relationship between them, and recommend an

appropriate operator parallelism configuration when the input

data rate is steady. Since the benefit model is binded to the

specific input data rate, when the rate changes, the transfer

learning algorithm quickly adjusts the parallelism using the

existing model at a new rate. This section elaborates the details

of AuTraScale. For concise presentation, we summarize the

frequently used notations throughout the paper in Table I.

TABLE I
SYMBOLS USED IN THIS PAPER.

Symbol Meaning
ve The input data rate of a streaming job
v̄i The average true processing rate of operator i

λ∗
i , v

∗
i The total true input, processing rate of operator i

k′ A vector (k′1, ..., k
′
N ) consisting of optimal parallelisms

of all operators when the throughput is maximized

k
A vector (k1, ..., kN ) consisting of current parallelisms
of all operators in a job

N The number of operator in a DAG
Pmax Upper limit of parallelism under the current resources
μ(x) The expected value of x
σ(x) The variance of x
lt Target latency of records in a job
lr Average latency of records in a job
sl The resource score threshold of a job
M Gaussian Process model
Ω The search space of Bayesian optimization algorithm

A. Assumptions

The streaming systems manage resources like CPU and

memory. Specifically in Flink, these resources are encapsu-

lated in the form of slots, which are fixed subsets each worker’s

resources are divided into. Managed memory isolation is

implemented between slots, but there is no CPU isolation.

Data arriving at an operator is assigned to its instances each

in a different slot by specific rules. We assume each instance

of the same operator has the same amount of data, like [5]. We

also assume that the network does not bottleneck the system,

which benefits from the advanced network hardware, such as

10G Ethernet and InfiniBand. We also assume that the cluster

resources are enough to support the QoS requirements of the

workload. It means there will not be a situation in which all

resources are exhausted, but the QoS is still unable to meet.

B. Operator performance model

In the auto-scaling scenario, to optimize the parallelism

and resource allocation, the actual processing performance of

the operator is usually defined as the ratio of the number

of processing records over the processing time. However, the

observed data processing time of an operator often contains
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a large amount of waiting time due to blocking, and hence

cannot reflect the actual processing ability of the operator

accurately. Therefore, we refer to the concept of the true rate

in DS2 [14]. The true processing rate of an instance of an

operator is:

v =
R

Tu
(2)

where R is the total number of records processed by an

operator instance in a period of time T , and Tu represents

the time used to process data in a period of time T . Tu

includes three parts: the deserialization time, processing time,

and serialization time. In the rest of the paper, we use the true

processing rate as defined above to indicate the performance

of the operator.

C. Throughput optimization

For a stream processing job, the throughput that can not

meet the input data rate results in data lag and latency increase.

Therefore, a successful auto-scaling strategy needs to adjust

the resource configuration quickly to make the throughput as

close to the input data rate as possible.

AuTraScale refers to the idea of DS2 [14] and uses the true

processing rate of the operators mentioned above to optimize

the throughput. Suppose that operator i− 1 and operator i are

two connected operators in the DAG. The operator i− 1 only

contains one instance and its total true processing rate v∗i−1 is

equal to the external input data rate ve and total output rate

o∗i−1 at time t. The operator i is the successor of the operator

i− 1 in a DAG and its total data input rate is λ∗
i . There is a

simple equivalence, λ∗
i = o∗i−1 = v∗i−1. To make the total true

processing rate of the operator i catch up with the input data

rate, the number of instances of operator i can be set to
⌈
v∗
i−1

v̄i

⌉
(v̄i is the average true processing rate of all the instances of

operator i).
However, for an operator, its parallelism is usually greater

than one and the total true processing rate may not meet

the external input data rate in practice. For this general case,

AuTraScale uses the following formula to calculate the optimal

parallelism of each operator in each step of iteration:

k′i =

⎧⎪⎪⎨
⎪⎪⎩

⌈
ve
v̄1

⌉
i = 1⌈

v∗
i−1·×

k′
i−1

ki−1

v̄i

⌉
i > 1

(3)

where k′i and k′i−1 is the optimal parallelism of operator i and

operator i− 1 at the current step of iteration.

The advantage of this approach is to quickly and accurately

find the minimum resource configuration that enables the

throughput to meet the requirements. But the throughput is

often constrained by other factors and can not meet the input

data rate in practice (see the results of the Yahoo Streaming

job in Section V for details). The DS2 method does not

address this issue and thus can fall into an infinite loop

due to that the throughput does not reach the target value.

Hence AuTraScale adds a new termination condition that

two consecutive identical recommended configurations occur

during the throughput optimization process.

It is worth noting that the potential benefit of throughput

optimization is to minimize event-time latency. Unlike the

processing latency we observe in the case studies in Section II,

event-time latency is defined as the interval between a tuple’s

event-time and its output time from the stream processing sys-

tem [16]. Therefore, event-time latency includes the pending

time of data in Kafka and the processing delay in streaming

systems. The above algorithm can find the configurations that

maximize throughput and reduce data lag, so it is also the

optimal solution for reducing pending time. To minimize the

event-time latency, AuTraScale uses the output of the above

throughput optimization algorithm as the minimum operator

parallelism in the following algorithms.

D. Preconditions for model training

Bootstrapping samples selection. As mentioned above,

to optimize the event-time latency, AuTraScale takes the

parallelism that maximizes throughput as the basic condition

to optimize the processing latency and resource usage using

Bayesian optimization. It means that the search space of the

BO algorithm is limited between the optimal configuration

of throughput and the maximum allowable parallelism of the

system. AuTraScale also selects bootstrapping samples for the

surrogate model of the BO algorithm within this scope.

There are two types of samples in the initial training set

of AuTraScale. 1) All operators in a sample have the same
parallelism, and different samples have different parallelisms.
First, the parallelism of all operators is set to the maximum

value k′max of the optimal parallelism for throughput. Then

we divide the remaining parallelism (the difference between

the current parallelism k′max and the maximum allowable

parallelism Pmax of the system) into M − 1 parts, each of

which is called an interval. The parallelism of all operators

in the i-th sample is set to k′max+i×interval. Those M
samples can help the BO algorithm perceive the QoS results of

different configurations, and also help us to determine whether

the current resources can meet the QoS requirements. 2) The
parallelism of only one operator is set to Pmax, and the
parallelism of other operators is kept in the basic configu-
ration. There are N such samples (where N is the number

of operators in a DAG) that can make the BO algorithm

capture the different impact of each operator on QoS as far as

possible and have a more precise decision. AuTraScale uses

these samples to help the BO algorithm find a near-optimal

solution faster.

Scoring function. In addition to throughput optimization,

AuTraScale is designed to also keep the latency below the

target threshold while ensuring that resources are not over-

allocated. Traditional latency-sensitive resource allocation so-

lutions often regard the latency as the sole optimization goal of

the model and rely on a greedy way to allocate resources from

low to high to avoid over-allocation of resources. AuTraScale
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jointly optimizes these two objectives with the help of a

scoring function.

AuTraScale’s scoring function comprehensively quantifies

the benefits of latency and resource usage of each parallelism

allocation scheme and uses the output value to train the

Gaussian process model. The score function needs to satisfy

two basic rules: (a) the lower the latency, the higher the score;

(b) the closer the parallelism is to the basic configuration (the

parallelism for maximizing throughput), the higher the score.

So AuTraScale defines the scoring function as:

F = α×min

(
1.0,

lt
lr

)
+ (1− α)× 1

N
×

N∑
i=1

k′i
ki

(4)

where k′i represents the minimum parallelism of operator i that

can maximize throughput. ki represents the current parallelism

of operator i. lr is the average processing latency of data with

the current configuration. lt is the target latency. The first half

of the formula is used to judge whether the current latency

meets the requirements, and the second half is used to prevent

over-provisioning of parallelism. α is an elastic parameter

indicating the relative importance of the two targets.

E. Bayesian optimization method at a steady rate

Here we introduce in detail how AuTraScale uses Bayesian

optimization to update the model and recommend the appropri-

ate parallelism when the input data rate is steady. The overall

workflow is shown in Algorithm 1. This algorithm aims to

make streaming jobs meet the latency constraint and minimize

resource usage in the scale-up and scale-down situations.

The BO method of AuTraScale needs an appropriate scoring

function to evaluate the comprehensive performance benefits

of different configurations and a surrogate model to fit the

relationship between the parallelism of operators and the

performance benefits. When the current resource is over-

provisioned or the QoS violation occurs, the acquisition func-

tion of AuTraScale will recommend new parallelism samples

for the next run of the job. Then, the model is updated using

the current metric information. If the termination condition is

not met, AuTraScale will iteratively perform the recommend-
run-judge process. We will introduce the key parts involved

in the above process as follows.

Surrogate Model. AuTraScale uses the Gaussian process

(GP) model with the Matern covariance kernel as the surrogate

model. Compared with others like the random forest, its

extrapolation quality is better. The Gaussian process does not

need to make assumptions about the relationship between

parameters and objective function in advance. This attribute

makes the training of the underlying model more flexible.

Acquisition function. The acquisition function aims to find

the next sample that is closer to the optimal solution. It

also balances the proportion of exploration and exploitation

during the sampling period. In the stream computing scenario,

an suitable acquisition function satisfies the following two

conditions: (a) Try to find the global optimal value; (b) The

evaluation cost should not be too large. To find the global

Algorithm 1 BO-based Resource Allocation Algorithm

Input:
lt, sl // Target latency and resource score threshold

bootstrap set // Train sample set

k′ = (k′1, . . . , k
′
N ) // Throughput optimal parallelism

k = (k1, . . . , kN ) // Initial parallelism

Output:
kbest // Best parallelism configuration

1: Model pre-training using samples in bootstrap set
2: Obtain the BO’s search space Ω.

x=(x1, . . . , xN )∈Ω, xi∈ [k′i, Pmax]
3: while true do
4: lr ← Run Job (k, Td)
5: score ← Score Function

(
k,k′, lr, lt

)
6: Add (k, score) to the existing set

7: Update the surrogate model M
8: if lr <= lt and score >= sl then
9: kbest ← k

10: break
11: else
12: knew←argmaxx∈Ω⊂RN EI(x,M)
13: k ← knew

14: end if
15: end while

optimal value, AuTraScale wants to mimimize the expected

deviation from the true maximum. However, its expense is

very high when we consider multiple steps ahead [17]. So

AuTraScale chooses an alternative, which is to maximize

the expected improvement with respect to the best value

known. Besides, to adjust the proportion of global search and

local optimization, AuTraScale introduces parameter ξ in the

expectation of the improvement function [18]. The formula of

acquisition function is as follows:

EI(x) =

{
KΦ(Z)+σ(x)φ(Z) if σ(x)>0

0 if σ(x)=0
(5)

K = μ(x)− f
(
x+

)− ξ (6)

Z =

{ K
σ(x) if σ(x) > 0

0 if σ(x) = 0
(7)

where μ(x) and σ(x) is the GP mean and standard deviation

at the sample x. Φ(Z) and φ(Z) is the standard normal CDF

and PDF of Z respectively. f (x+) is the best value known.

Termination condition. The termination condition of Au-

TraScale’s BO algorithm is that the latency requirement is met

and the benefit score is greater than the threshold. AuTraScale

calculates the benefit score threshold using the over-allocation

ratio w of the resource specified by the user. w is defined as

follows:

Cnow − Copt

Copt
< w ⇐⇒ Copt

Cnow
>

1

1 + w
(8)
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where Cnow is the current parallelism and Copt is the optimal

parallelism.
Copt

Cnow
is the resource allocation ratio. For a job

with N operators, AuTraScale defines the resource allocation

ratio as the mean of the corresponding values of all operators,

which can be expressed as
Copt

Cnow
= 1

N ×∑N
i=1

k′
i

ki
. Therefore,

combining with the definition of the scoring function, the con-

dition that comprehensive benefit should meet when Bayesian

optimization terminates is as follows:

F � α+ (1− α)× 1

1 + w
(9)

F. Transfer learning method at the changed rate

For the same job, AuTraScale needs a new model to describe

the relationship between resource allocation and comprehen-

sive benefits when the input data rate changes. However,

the cost of training a model from scratch is unacceptable.

AuTraScale refers to the idea of transfer learning and makes

full use of the existing benefit model to recommend new

configurations. This approach can replace an inaccurate new

model by providing an allocation closer to the optimal solution

when the amount of initial training samples is insufficient.

Algorithm 2 Transfer Learning Method

Input:
{Mi}c−1

i=1 , Dc = {(kc
t , s

c
t)}Tt=1, k′, Num, lt, sl

Output:
kbest // Best parallelism configuration

1: while true do
2: (kt, st) ∈ Dc

3: μc−1 (kt) ← Mc−1.predict (kt)
4: D′

c ← {(kt, st − μc−1 (kt))}Tt=1

5: M′
c ← Gaussian Process Regress (D′

c)
6: Xc ← bootstrap set

(
Pmax,k

′)
7: Dc predict ← Dc

8: for all xtest ∈ Xc do
9: μc−1 (xtest) ← Mc−1 (xtest)

10: μ′
c (xtest) ← M′

c (xtest)
11: μc (xtest) = μc−1 (xtest) + μ′

c (xtest)
12: Dc predict. add (xtest, μc (xtest))
13: end for
14: (knew, score) ← Algorithm1(lt, sl, Dc predict)
15: Dc.add(knew, score)
16: num++
17: if num >= NUM then
18: Algorithm1(lt, sl, Dc)
19: break
20: end if
21: end while

When the input data rate changes, AuTraScale first opti-

mizes throughput to obtain the base configuration k′ and then

calls the transfer learning method. Suppose that there are c−1
benefit models {Mi}c−1

i=1 , where the corresponding rate of the

model Mc−1 is the closest to the new rate. We chose the

model Mc−1 and the real samples from an available set Dc

at the current rate to train a residual model M′
c. Then we

use the residual model and the model Mc−1 to calculate the

Gaussian process mean of data xtest in the initial sample set,

which is called μ′
c and μc−1. The sum of μ′

c and μc−1 is

the objective function estimation of the current data xtest.

This method saves the consumption of running the initial set

samples one by one. The specific steps of the above process

can be seen in Algorithm 2.

It is important to note that when there are enough real

samples at the new rate, AuTraScale can automatically switch

from Algorithm 2 to Algorithm 1. Because when the accuracy

of the model trained by the real sample size is high enough,

the estimated sample will lose its function and even reduce

the accuracy of the model. We recommend that the algorithm

is switched when the number of real samples is at least larger

than the initial set size. The switching time can be determined

by setting parameter Num according to the specific situation.

IV. SYSTEM DESIGN

The overall design of the AuTraScale system follows the

control cycle of the monitor, analyze, plan, and execute

(MAPE) [19]. An overview of the system architecture is

presented in Fig. 3. Rectangles filled with grids, diagonals,

brick lines, and transverse lines represent the above four

control modules respectively.

Fig. 3. The architecture overview.

Monitor. The streaming systems usually provide users a

metric interface to gather job running information or expose

metrics to external systems. To more conveniently analyze the

monitored metrics, AuTraScale chooses a third-party database

system, such as Prometheus and InfluxDB, to store metrics

information uniformly. Besides, to obtain the true processing

rate of the operator mentioned in the Section III, it is necessary

to modify the source code of the system. The new metrics are

also stored in the third-party DB system.

Analyze. The Metric Aggregator selects and integrates

metrics information monitored, such as calculating the total

processing rate of all instances of each operator, and sends

them to the Scaling Manager. The Scaling Manager will judge

whether the resource configuration needs to be adjusted and

whether there is a model suitable for the current rate in the

model library.

Plan. The Policy Controller decides to execute Algorithm

1 or Algorithm 2 according to the feedback from the Scaling

Manager. The controller creates or updates the benefit model
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in the model library, and outputs the next resource allocation

scheme. It is worth mentioning that the accuracy of the model

will gradually increase as the training data increases during

the job runs.

Execute. After receiving the resource configuration recom-

mended by the controller, the System Scheduler stops the

current job and store status information as a savepoint firstly.

Then, it restarts the job that was just interrupted using the new

configuration.

In addition, to improve AuTraScale’s flexibility and stability,

we introduce the following parameters during the AuTraScale

component operation.

• Policy interval. This parameter determines how often

AuTraScale components are called.

• Policy running time. When the Policy Controller makes a

decision, the job needs a certain amount of time to restart

and the QoS is extremely unstable at this time. Therefore,

AuTraScale needs the policy running time to obtain a

stable metric in the current configuration. In the policy

running phase, the decisions of the Metric Aggregator and

Scaling Manager will be ignored. It is better to set the

policy running time to an integer multiple of the policy
interval.

V. EVALUATION

A. Experiment Setup

We evaluate AuTraScale on a physical cluster composed

of 3 Dell PowerEdge R730xd (20-core CPUs and 256 GB

RAM) and 1 Dell PowerEdge R740xd (32-core CPUs and

256 GB RAM). AuTraScale is implemented in Flink 1.10.0

and Hadoop Yarn 2.7.5. We run Flink applications in the

yarn-per-job mode, which launch Flink within YARN only

for executing a single job. Hadoop and Flink are located

at three R730xd machines. To simulate the real production

environment, we also deploy Zookeeper and Kafka on the

other R740xd machine in a pseudo-distributed mode to store

data. Flink metrics and Kafka metrics are stored in influxDB

databases that running on the Hadoop master machine.

For comparison, we also evaluate recently proposed auto-

scaling methods DRS [5] and DS2 [14] in the Flink envi-

ronment. DS2 is a simple and fast method for optimizing

throughput with some latency benefits, but its optimization

effect is affected by the linear assumption. Comparing with

DS2, we want to verify the effectiveness of AuTraScale

and whether it can obtain some better solutions. DRS can

guarantee end-to-end latency and minimize resource usage

based on the queuing theory and greedy algorithm during the

auto-scaling process. However, its accuracy is easily affected

by interference between tasks. We mainly compare the perfor-

mance of AuTraScale and DRS in terms of latency guarantee.

To avoid the influence of different rate metrics, we use the

observed processing rate and true processing rate to run DRS

respectively. In this way, the advantages of AuTraScale itself

in minimizing resource usage and convergence rate can be

highlighted without the effect of new metric.

We use three representative workloads to verify the perfor-

mance of AuTraScale. WordCount Streaming Job has a simple

linear DAG structure, which contains four operator: Source,

FlatMap, Count and Sink. Yahoo Streaming Benchmarks [20]

is an advertisement event processing case and we use an

extended version [21] (The DAG structure is shown in Fig.

4). Nexmark [22] is a benchmarking suite of Apache Beam

that contains multiple continuous data stream queries. We

use Query5 (sliding window) and Query11 (session window)

to evaluate the performance of AuTraScale on the special

operators.

Fig. 4. The topology of Yahoo Streaming Benchmarks.

B. Throughput optimization

To verify the effect of throughput optimization in Al-

gorithm 1, we run four workloads: WordCount, Yahoo,

Nexmark-Query5, and Nexmark-Query11. Their input data

rates are 350k records/s, 60k records/s, 30k records/s, and

100k records/s, respectively. The initial parallelism of all

operators for each workload is 1 and the policy running time

is 5 minutes.

When the throughput is lower than the input data rate

and running time is greater than 5 minutes, the Scaling

Manager will inform the Policy Controller to call Algorithm

1 and return new parallelism. The System Scheduler receives

the new configuration and restarts the job. After the policy

running time, if the Scaling Manager detects that the current

throughput is greater than the input data rate or the current

parallelism is the same with the last iteration, the algorithm

will terminate.

(a) (b)

Fig. 5. (a) Throughput optimization results for different workloads. n
represents the number of iterations. Because of the record backlog in Kafka,
WordCount’s throughput is temporarily higher than the targe. The throughput
of Yahoo jobs is limited by Redis’s read/write rate and cannot reach the target
rate. (b) Throughput optimization process for Yahoo Streaming job. In the
fourth iteration, the parallelism is p4 (40, 1, 1, 1, 40) again, and the algorithm
is terminated. When the parallelism is larger, such as p5 (40, 40, 40, 40, 40)
and p6 (50, 50, 50, 50, 50), the throughput does not continue to increase.

When the throughput optimization algorithm is terminated,

the operator parallelisms of the four workloads are (3, 4, 12,

10), (40, 1, 1, 1, 40), (1, 18), and (1, 11), respectively. Fig.
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5(a) shows the optimal throughput and the number of iterations

for different workloads. From the results, AuTraScale can

achieve the optimal throughput with four iterations at most.

For WordCount job, the data accumulated in Kafka are also

processed along with the newly arrived data under the current

optimized configuration, so its throughput will be higher than

the input data rate. Due to the limitation of the read/write

rate of Redis, the optimal throughput of the Yahoo streaming

job cannot reach the input data rate. In this situation, the

parallelism at the end of iteration is not always optimal.

Therefore, AuTraScale reviews the iterative process and selects

the solution with maximum throughput and less resource

utilization as the final result. In Fig. 5(b), the parallelism p2

(4, 2, 1, 1, 34) is selected as the final optimal configuration.

The experiment after 35th minute in Fig. 5(b) is to verify

that higher parallelism does not lead to further throughput

optimization due to the external limit.

C. Elasticity tests at a steady rate

After determining the optimal configuration of throughput,

AuTraScale trains the initial model using the bootstrapping

samples and iteratively updates the model as the job runs.

When QoS and resource utilization do not meet requirements,

AuTraScale starts the scale-up or scale-down operation to

adjust the resource configuration. We design the following

experiments to show the efficiency of AuTraScale in this

process.

The experiment consists of two jobs: WordCount job (target

throughput is 350k records/s and target latency is 180 ms)

and Yahoo job (target throughput is 34k records/s and target

latency is 300 ms). The initial training set of two jobs contains

10 and 40 samples respectively. AuTraScale algorithm termi-

nates when the latency, throughput and benefit scores meet the

requirements concurrently. The benefit score threshold is 0.9

and the policy running time is 10 minutes. The DRS method

with true and observed processing rate is used for comparison.

It runs until the latency meets the requirements or the total

number of new parallelism scheme is over the upper limit of

resource.

The results are shown in Table II and Table III. From the

results, we can draw the following conclusions. First, as long

as the resources are sufficient, AuTraScale can find a paral-

lelism scheme that meets QoS requirements in fewer steps. The

more train samples, the fewer iterations. Second, Fig. 7 shows

that the optimal parallelism that meets QoS requirements of

AuTraScale takes fewer resources comparing with the DRS

method in most tasks. AuTraScale can reduce 66.6% and

36.7% resource consumption respectively in the scale-down

and scale-up scenarios. Although the DRS method with true

processing rate can find solutions that use fewer resources

than AuTraScale in the WordCount scale-up experiment, it

can not meet the throughput requirements. Third, Fig. 6 shows

that less parallelism may bring better latency benefit, and this

phenomenon is consistent with Observation 2.2 in Section II.

It is worth noting that the configurations obtained by the DRS

method sometimes do not meet QoS requirements. It shows

that the error of the queueing model is larger in complex

resource mapping schemes. In contrast, the Gaussian process

model used by AuTraScale has better performance.

(a) WordCount Streaming job (b) Yahoo Streaming job

Fig. 6. Latency comparison of optimal configuration for different methods
in elasticity tests. DRS Up o represents the final optimized configuration
found by running the DRS method with the observed rate in the scale-up test.
DRS Down t represents the final optimized configuration found by running
the DRS method with the true rate in the scale-down test, and so on.

(a) WordCount Streaming job (b) Yahoo Streaming job

Fig. 7. Parallelism comparison of optimal configuration for different
methods in elasticity tests. Up max represents the max parallelism of optimal
configuration in the scale-up test. Down total represents the sum of all
operators’ parallelism in optimal configuration in the scale-down test.

D. Transfer efficiency when data rate changes

In this set of experiments, we compare the efficiency of

AuTraScale’s transfer learning algorithm and DS2 method

when data rate changes by running Query5 and Query11

in Nexmark benchmarking suite. The input data rates of

the two queries are set to 30k records/s and 100k records/s

respectively. We train the benefit models corresponding to

20k records/s and 80k records/s in advance as the input of

the transfer learning algorithm. The target latency of the two

queries is set to 500 ms and 150 ms respectively. We run

DS2 with offline mode to get the optimal parallelism. Fig.

8(a) shows the parallelism and the number of iterations when

these two methods terminate the iteration. Fig. 8(b) plots per-

record latency for the terminal configuration of each query

with different methods.

As shown in Fig. 8(a) and Fig. 8(b), for Query11, Au-

TraScale uses the same number of iterations as DS2 to find

a configuration with similar parallelism and similar latency

distribution. It indicates that our transfer learning algorithm

can achieve similar results with existing methods. For Query5,

although AuTraScale needs two iterations more than DS2 to

find the configuration to meet QoS requirements, its recom-

mended configuration saves five parallelisms (resource units)

than DS2. For both Query11 and Query5, AuTraScale saves an
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TABLE II
COMPARISON OF OPTIMAL CONFIGURATION IN THE SCALING TEST FOR WORDCOUNT JOB.

Type Initial value Method Rate type Optimal value Throughput (records/s) Latency (ms) Score Iteration meet QoS

Up 1,3,12,2
DRS

observed 23,33,40,16 381k 246 – 9 no
true 2,1,8,8 338k 146 – 2 no

AuTraScale true 7,8,12,38 405k 172 0.9096 3 yes

Down 36,32,24,20
DRS

observed 40,40,40,33 405k 120 – 1 yes
true 40,33,40,40 406k 242 – 1 no

AuTraScale true 10,16,12,10 355k 160 0.9275 4 yes

TABLE III
COMPARISON OF OPTIMAL CONFIGURATION IN THE SCALING TEST FOR YAHOO STREAMING JOB.

Type Initial value Method Rate type Optimal value Throughput (records/s) Latency (ms) Score Iteration meet QoS

Up 4,2,1,1,4
DRS

observed 40,33,33,33,33 35.3k 329 – 4 no
true 40,33,33,33,40 35.4k 242 – 2 yes

AuTraScale true 4,2,1,1,40 34.7k 223.7 0.994 1 yes

Down 40,40,40,40,40
DRS

observed 40,33,33,33,33 35.1k 276 – 2 yes
true 40,33,33,33,40 34.5k 247 – 2 yes

AuTraScale true 22,2,1,1,36 36.2k 246 0.965 1 yes

(a) Parallelism and iterations. (b) Latency distribution. (c) CPU and memory usage.

Fig. 8. The optimal configuration comparison of the AuTraScale transfer learning algorithm and DS2 at a new rate for Nexmark job.

average of 13.5% in parallelism. Specifically, as shown in Fig.

8(c), our method saves 5.2% CPU resources and 6.2% memory

resources on average comparing with DS2. In terms of latency,

AuTraScale regards latency as one of the optimization goals to

ensure that the latency requirement is met, but DS2 does not

explicitly optimize the latency. Besides, the per-record latency

benefits of AuTraScale are slightly better than that of DS2.

E. The running overhead of the AuTraScale

AuTraScale directly calls the metric group interface of

Flink to expose the rate information to the outside, so it

does not bring additional overhead to the system. Users

can get the true rate information by the path taskman-
ager job task trueProcessingRate like accessing other native

metrics.

To evaluate the algorithm overhead of AuTraScale, we run

two algorithms with a different number of operators to obtain

the CPU time consumed by them. The results are listed in

Table IV. From the results, the overheads of Alg1 train and

Alg2 are linear to the number of operators, but it is not enough

to affect the QoS of job. Moreover, the algorithm overhead will

be less than 1ms when Algorithm 1 directly calls the model to

recommend new parallelisms for different operators, as shown

in line Alg1 use.

TABLE IV
COMPUTATION OVERHEADS IN SECOND AT THE DIFFERENT NUMBER OF

OPERATORS.

Numbers 2 4 6 8 10
Alg1 train 0.042 0.053 0.065 0.076 0.088
Alg1 use 0.0008 0.0006 0.0006 0.0006 0.0006

Alg2 0.070 0.081 0.094 0.104 0.116

VI. RELATED WORK

Streaming system need more flexible auto-scaling solutions

to avoid inappropriate resource allocation because of fre-

quently changing and unpredictable workloads. Existing auto-

scaling solutions of streaming systems include the following

policies or models.

Threshold-based policy. The controller uses metrics about

system resources and runtime information to trigger scaling

action. Some methods use traditional mertics include CPU

utilization [10] [23], memory utilization [23], throughput [8],

network [24], congestion status [8], etc. Some other methods

define some new metrics, such as the Effective Throughput

Percentage(ETP) in Stela [11]. The scaling threshold may be

dynamic or contain some buffer conditions of trigger action.

Queuing theory model. Some work [4] [5] use mathematical

models related to queuing theory, such as Kingman’s formula
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and Jackson open queueing networks, to model the end-to-

end latency of the system. The controller uses these models to

predict the latencies of different scaling schemes before action

and find the best one to execute. However, the accuracy of

this policy is easily affected by interference between multiple

tasks.

Rule-based and blacklisting policy. Rule-based Dhalion

[7] detects system bottlenecks by analyzing metrics such as

system backpressure, then generates diagnosis and select a

scaling plan according to the select rule in the resolution stage.

The blacklisting means to put a solution that has no actual

benefits on the blacklist and not execute it again. However,

the backpressure monitoring method cannot give a reduction

plan in the case of over-provisioning. IBM Streams [8] that

uses the congestion metric has similar drawbacks.

Other policies. Google Dataflow [12] heuristically adjusts

the number of workers in a cloud environment based on several

signals such as CPU utilization, backlog, and throughput.

Based on the data flow model, DS2 [14] determines the

appropriate parallelism according to the input data rate and the

true processing rate of the operator. A topology-based scaling

policy [25] for Apache Storm is proposed to make up for

some drawbacks of rebalance command and improve scaling

performance. This scheme performs coarse-grained elastic

scaling without capturing the difference between operators and

has a poor overall resource utilization.

VII. CONCLUSION

In this paper, we propose AuTraScale, an auto-scaling

solution for streaming systems to guarantee QoS and save

resource usage. AuTraScale abstracts the relationship between

the parallelism and QoS in streaming systems to a Gaussian

process model to minimize the impact of resource interference

on the prediction accuracy. The Bayesian optimization method

is used to iteratively update the model and recommend the

optimal parallelism configuration. When the input data rate

changes, the transfer learning method can quickly adjust the

parallelism as needed with minimal samples. To evaluate the

effectiveness of AuTraScale, we conduct several experiments

and compare with the state-of-the-art methods. Results show

AuTraScale can reduce 66.6% and 36.7% resource consump-

tion respectively in the scale-down and scale-up scenarios

while ensuring QoS, and save 13.5% resource on average

when the input data rate changes. For future work, we plan

to investigate efficient methods to unbind benefit models from

input data rates, reduce the training costs and decrease the

additional latency overhead in the reconfiguration process.
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