
ENTS: An Edge-native Task Scheduling System for
Collaborative Edge Computing

Mingjin Zhang§, Jiannong Cao§, Lei Yang†, Liang Zhang‡, Yuvraj Sahni§, Shan Jiang§

§Hong Kong Polytechnic University, †South China University of Technology, ‡Shanghai Jiao Tong University
§{csmzhang, csjcao, csysahni, cssjiang}@comp.polyu.edu.hk, †sely@scut.edu.cn, ‡zhangliang@sjtu.edu.cn

Abstract—Collaborative edge computing (CEC) is an emerging
paradigm enabling sharing of the coupled data, computation,
and networking resources among heterogeneous geo-distributed
edge nodes. Recently, there has been a trend to orchestrate
and schedule containerized application workloads in CEC, while
Kubernetes has become the de-facto standard broadly adopted
by the industry and academia. However, Kubernetes is not
preferable for CEC because its design is not dedicated to edge
computing and neglects the unique features of edge nativeness.
More specifically, Kubernetes primarily ensures resource provi-
sion of workloads while neglecting the performance requirements
of edge-native applications, such as throughput and latency.
Furthermore, Kubernetes neglects the inner dependencies of
edge-native applications and fails to consider data locality and
networking resources, leading to inferior performance. In this
work, we design and develop ENTS, the first edge-native task
scheduling system, to manage the distributed edge resources
and facilitate efficient task scheduling to optimize the perfor-
mance of edge-native applications. ENTS extends Kubernetes
with the unique ability to collaboratively schedule computation
and networking resources by comprehensively considering job
profile and resource status. We showcase the superior efficacy
of ENTS with a case study on data streaming applications.
We mathematically formulate a joint task allocation and flow
scheduling problem that maximizes the job throughput. We
design two novel online scheduling algorithms to optimally
decide the task allocation, bandwidth allocation, and flow routing
policies. The extensive experiments on a real-world edge video
analytics application show that ENTS achieves 43%-220% higher
average job throughput compared with the state-of-the-art.

Index Terms—Edge computing, edge-native, task scheduling,
bandwidth allocation, distributed computing.

I. INTRODUCTION

Recently, there has been a noticeable shift to migrate the

computation-intensive workloads from the remote cloud to

near-end edges [1]. Compared with traditional cloud comput-

ing, the emerging edge computing paradigm enjoys outstand-

ing benefits, including reduced response latency and enhanced

privacy preservation [2] [3]. A large number of latency-

sensitive and mission-critical applications gradually switch to

the deployment at the network edge, e.g., virtual reality [4],

autonomous driving [5], and personalized healthcare [6]. Col-

laborative edge computing (CEC) is a popular and new edge

computing paradigm enabling sharing of data, computation,

and networking resources among geo-distributed and heteroge-

neous edge nodes, including edge servers, edge gateways, and

mobile phones [7]. CEC is promising and beneficial because

it provides higher reliability and lower latency and facilitates

collaboration among different stakeholders [8].

Task scheduling is a fundamental problem of collaborative

edge computing, which refers to the arrangement of the user-

generated application tasks to the heterogeneous edge nodes by

deciding when, where, and how to offload the tasks and how to

manage and utilize the underlying computation, storage, and

networking resources [2]. Many works have investigated the

task scheduling problems in collaborative edge computing [9].

Recently, there has been a trend of scheduling containerized

application workloads among the geo-distributed and hetero-

geneous edge infrastructure [10]. This is because the con-

tainer technology provides lightweight resource virtualization

and enables fast application development and flexible service

deployment over heterogeneous edge nodes.

There are several solutions to orchestrate containerized

applications, such as Swarm [11], Kubernetes [12], and Mesos

[13]. Among them, Kubernetes has established its leadership

[14]. Many works have studied optimizing the Kubernetes

scheduler for the cloud environment, where cloud servers

with abundant computation resources are interconnected with

a high-bandwidth and stable network in a data center [15].

However, Kubernetes is designed not dedicated to edge com-

puting, neglects the unique features of edge nativeness, and

lacks adequate support for edge-native applications [16].

First, edge-native applications are usually performance-

aware, demanding high throughput, low latency, and strict

privacy. The Kubernetes scheduler is mainly designed to

ensure resource provision of workloads, such as the capacity

of requested memory and CPU cores. It lacks support to meet

the performance requirements of edge-native applications.

Second, edge-native applications are with inner dependencies.

Many intelligent edge applications are resource-greedy and

complex, consisting of lots of inter-dependent components

which are usually deployed to multiple edge nodes con-

sidering the constraint resource of a single node. However,

the Kubernetes scheduler fails to consider the application’s

inner structure. Third, the data, computation, and networking

resources are heterogeneous and coupled with each other. Ap-

plication deployed on heterogeneous edge nodes experiences

distinct performance, and the coupled resources require joint

orchestration. However, Kubernetes concentrates on orches-

trating computation resources without jointly considering the

data locality and networking resources, which may lead to

underutilized resources and poor performance of workloads.

Though some works [17] [18] consider the inner dependencies

of workloads and the computation resources among edge

1

20
22

 IE
EE

/A
CM

 7
th

 S
ym

po
siu

m
 o

n
Ed

ge
 C

om
pu

tin
g

(S
EC

) |
 9

78
-1

-6
65

4-
86

11
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SE
C5

49
71

.2
02

2.
00

01
9

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

nodes for optimizing the application performance, they fail

to consider the data locality and resource heterogeneity.
In this work, we designed and developed ENTS, the first

edge-native task scheduling system, to manage the geo-

distributed and heterogeneous resources of edge infrastruc-

tures and enable efficient task scheduling among distributed

edge nodes to optimize application performance. ENTS is

developed based on Kubernetes, allowing Kubernetes to col-

laboratively schedule computation and networking resources

considering both job profile and resource status. Specifically,

to parse the inner dependencies of the user-submitted jobs,

we adopt a data flow programming model, where each task

in a job is programmed as a functional module. A profiler is

designed to profile the job’s execution time on heterogeneous

edge nodes. The job profile information will later be used to

facilitate efficient task scheduling. We also developed a net-

work manager to manage the networking resources, which col-

laborates with the Kubernetes original components to jointly

orchestrate the coupled resources under the coordination of a

newly designed collaborative online scheduler. The scheduler

runs the intelligent scheduling algorithms to generate the task

scheduling policies to optimize the application performance.
To showcase the efficacy of ENTS, we formulate a joint

task allocation and flow scheduling problem for data streaming

applications as a case study. The problem is a mixed integrated

non-linear problem proven to be NP-hard [19]. We design two

online algorithms to solve the problem, which decides how

to partition the job, where to allocate the tasks, and how to

allocate the routing path and bandwidth for intermediate data

flow to optimize the average job throughput. The efficacy of

the proposed system is illustrated by developing a real-world

testbed for a representative edge video analytics application,

namely, object attribute recognition. We develop a real-world

hybrid testbed with both physical and virtual edge nodes to

evaluate the system even in large scale. Online jobs will

continuously arrive and be partitioned and scheduled among

the edge nodes. We have comprehensively evaluated the per-

formance of the designed system by comparing it with the

state-of-the-art regarding different metrics, including average

job throughput and average waiting time. The evaluation

results show that our edge-native task scheduling approach

improves the performance significantly.
The main contributions of this work are as follows:

• We design and develop ENTS to manage the data, com-

putation, and networking resources in the heterogeneous

geo-distributed edge infrastructure. ENTS is the first work

to jointly manage coupled edge resources for optimizing

the performance of edge-native applications.

• We formulate a joint task allocation and flow scheduling

problem for data streaming applications and propose two

online algorithms to solve the problem.

• We evaluate the performance of proposed solutions in

a real-world testbed with a video analytics application.

The experimental results indicate the superiority of ENTS

over the baseline approaches in terms of higher job

throughput and lower latency.

Controller
Manager

API Serveretcd

Scheduler

Kubelet

Pod Pod

Kubelet

Pod Pod

Kubernetes Master
Worker Node

Worker Node

Fig. 1: Components of Kubernetes System

II. BACKGROUND AND MOTIVATIONS

In this section, we introduce some background knowledge

of the Kubernetes scheduler and illustrate the motivations for

designing ENTS through some concise examples.

A. Kubernetes Scheduler

Fig. 1 depicts the components of Kubernetes with a master-

client architecture. There is at least one centralized master

managing resources and scheduling containerized workloads

across multiple worker nodes (clients). The pod is the basic

unit of Kubernetes to schedule the workload. A pod can con-

tain one or more containers. There are mainly four components

in the master node. The API server is an entry point to manage

the whole cluster, providing services via Restful APIs. Com-

ponents communicate and interact with each other through the

API server. Etcd is a key-value pair distributed database that

records the cluster status, such as node resource availability,

location, states, and namespace. The scheduler is responsible

for scheduling pods. It parses the operational requirements

of pods and binds a pod to the best fit node. The controller

manager is responsible for monitoring the overall state of the

cluster. It launches a daemon running in a continuous loop

and is responsible for collecting cluster information. Kubelet

is the node agent in the clients. It is responsible for reporting

events and resource usage and managing containers.

When scheduling user-submitted workloads, the scheduler

first takes a pod pending to be scheduled from the etcd

database and then binds the pod to the corresponding client

node according to the pre-defined scheduling policies. The

scheduling policy is sent to Kubelet on the client nodes via

the API server. After receiving the policies, Kubelet lunches

the pods and monitors the pods’ execution status. Kubernetes

scheduler adopts a multi-criteria decision-making algorithm

in two stages. The first stage is node filtering, where the

scheduler will select candidate nodes capable of running the

pods by applying a set of filters, such as memory and storage

availability. Those filters are also known as predicates. The

second stage is node scoring. It scores all the candidates based

on one or more strategies, such as LeastRequestedPriority,

which allocates pods to the nodes with the least computa-

tion resource consumption, and BanlancedResourceAllocation,

which balances the resource consumption among edge nodes.

2

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

(a) Task Graph and Characteristics

(b) Edge Network and Edge Node Resources

a

b

c d

e

Source

5

2

1 1

1

1

0.5

f

Task
Memory
Demand

Workload

a 1 5
b 2 10
c 2 10
d 2 10
e 3 15
f 1 5

e1

e3e2

e4 e5

20 20

5

10 10

15

6

Edge
Node

Memory
Available

Computing
Power

e1 24 200
e2 8 50
e3 8 50
e4 2 20
e5 4 30

e1

e3e2

e4 e5

Throughput = 2

20 20

5

10 10

15

6

f
sa
=10

(c) Job Allocation

without Task Partition

e1

e3e2

e4 e5

Throughput = 3.3

20 20

5

10 10

15
6

f
ac
=6.7

f
ab

=3.3

(e) Task Partition

with Bandwidth Allocation

e1

e3e2

e4 e5

Throughput = 2.5

20 20

5

10 10

15
6

f
ac
=5

f
ab

=5

(d) Job Allocation

with Task Partition

e1

e3e2

e4 e5

Throughput = 4

20 20

5

10 10

15
6

f
ac
=10

f
ab

=6

(f) Task Partition

with Customized Routing

Fig. 2: A Motivating Example of Collaborative Task Scheduling

Those strategies are known as priorities. The scheduler will

allocate a pod to the node with the highest score.

B. A Motivating Example

As shown in Fig. 2, this section presents a motivating

example articulating the benefits of collaborative task schedul-

ing, which jointly considers the coupled data, computation,

and networking resources in edge computing scenarios. The

problem is to allocate the application with dependent tasks,

shown in Fig. 2(a), to a set of edge nodes, shown in Fig. 2(b),

such that the job throughput is maximized. Fig. 2(a) shows

the task graph of the job modeled as a directed acyclic graph.

There are 6 tasks in the job, and the weight of the link between

tasks indicates the volume of the dependent data. Fig. 2(a)

also shows the memory demand and workload of each task.

We assume that the total memory demand and workload are

the sum of tasks, i.e., 11 and 55, respectively. Note that the

job is a streaming application, where input data continuously

arrives from the source, i.e., edge node e4. The amount of

the input data is 5. In Fig. 2(b), there are 5 edge nodes

{e1, e2, e, e4, e5}. The weight of the link between the edge

nodes indicates the bandwidth. Similarly, the table in Fig. 2(b)

shows the available memory and computing power of the edge

nodes in the network.

Fig. 2(c) shows the job allocation strategy without task

partition, where the job is scheduled to node e1 and the input

data is transmitted from the source node e4 to e1 indicated by

data flow fsa, whose allocated bandwidth is 10 and routing

path is e4 → e2 → e1. The throughput is calculated by

1/max{5/10, 55/200} = 2. Strategy in Fig. 2(c) is known

as LeastRequestPriority, which are extensively used in Kuber-

netes. Differently, Fig. 2(d) partition the job, where task a is

allocated to source node e4 and the rest tasks are allocated to

node e1. Hence there are two data flows indicated by fac and

fab with the same routing path e4 → e2 → e1. By default, two

data flows equally share the bandwidth of link < e2, e4 >. The

throughput of the job using this strategy is 2.5, which is better

than strategy in Fig. 2(c) as the raw data transmission in (c)

becomes the bottleneck. Further, Fig. 2(e) improves (d) with

the throughput 3.3 due to the optimized bandwidth sharing

policy, where the bandwidths allocated to flow fac and fab are

proportional to the amount of dependent data. Fig. 2(f) shows a

throughput of 4 with customized routing policy, where the flow

fac selects the routing path e4 → e2 → e1 with the allocated

bandwidth 10 and the flow fab selects the path e4 → e3 → e1
with the allocated bandwidth 6.

From the above examples, we can see that joint considera-

tion of the coupled resources by optimizing the task allocation

strategies, the bandwidth allocation, and flow routing policies

can improve the application performance. In the rest of this

paper, we build ENTS system to orchestrate coupled edge

resources and design optimal collaborative task scheduling

algorithms by jointly considering the data, computing, and

networking resources of the geo-distributed edge nodes.

III. SYSTEM OVERVIEW

This section gives an overview of the design goals and

the system components. ENTS is designed based on Kuber-

netes to manage the resources and schedule the workloads

over the geo-distributed, large-scale, and heterogeneous edge

environment. It has two main objectives: 1) Jointly manage

and orchestrate the coupled and distributed data, computation,

and networking resources; 2) Enable effective distributed task

execution to achieve better performance of applications.

A. Design Goals

The design of ENTS obeys the principles as follows.

• Scalability. The system can be scaled to a large number

of devices and services retaining its high performance.

• Collaboration. The different edge nodes can collaborate

to manage the distributed and heterogeneous resource

regarding data, computation, and networking.

3

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

• Universality. The system supports execution of various

kinds of tasks and workloads.

B. System Architecture

In Fig. 3, we show a birds-eye view of ENTS’s system

architecture and functional workflow. The system adopts the

server-client architecture and is built based on Kubernetes

with a master node to manage the distributed resources and

schedule the tasks among edge nodes. Kubernetes components

are used to manage the computation and storage resources of

edge nodes. However, Kubernetes lacks support to profile the

job’s inner-dependency and execution time on heterogeneous

edge nodes and orchestrate networking resources. Hence, we

develop new components to enhance the ability of Kubernetes

to orchestrate coupled resources considering the job profile.

The system follows the principles of service-oriented archi-

tecture, where functions of the components are developed as

services and can be called with APIs.

The components of the system are listed below.

• Profiler parses the input job and profiles the execution

time of tasks on heterogeneous edge nodes. The job

profile will be used to support intelligent task scheduling.

• Scheduler accesses the system information, such as CPU

and GPU usage, network conditions, and job profile. On

this basis, it generates the policies of task execution and

resource allocation that optimizes job performance.

• Compute controller manages the computation and storage

resources at the edge nodes. It leverages the Kubernetes

components API server and controller manager to orches-

trate the computation resources.

• Network controller and manager manage the networking

resources of edge nodes, such as bandwidth allocation,

routing and forwarding of data flows.

• Messenger handles the message between the edge node

and the master. We extend the messaging of Kubernetes

between the master and clients because it lacks support

for orchestrating network resources.

• Kubelet manages pods, containers, and data volumes. It is

Kubernetes original component, whose primary responsi-

bility is for task execution.

• MetaManager is responsible for monitoring and storing

device status and application status. Specifically, the de-

vice and task monitors are responsible for storing and re-

trieving metadata (device status and task execution status)

to and from a lightweight database. Such information will

be sent to the master node for supporting task scheduling.

ENTS is based on Kubernetes and reuses the key compo-

nents of Kubernetes. It equips Kubernetes with the ability to

jointly orchestrate the networking and computation resources

to optimize the performance of edge-native applications. The

general workflow of the system is described as follows. The

profiler first parses the user-submitted job and profiles the

execution time of each task of the job on heterogeneous

edge nodes. The job profile information, including the inter-

dependencies of tasks and task execution time, will be used

for later decision-making of task scheduling. The scheduler

Profiler
Computation

Jobs

Collaborative

Online Scheduler

Other

Edge Nodes
Messenger

Volume Container Process . . .

Kubelet
Network

Manager

Device

Monitor

Task

Monitor

Meta Manager

Edge

Node

Compute

Controller

Network

Controller

Controller

Master

Fig. 3: Architecture of the ENTS System

generates the task execution policies by jointly considering the

job profile information, the data locality, available computation

and networking resources of the edge nodes. Specifically, the

policies decide which node to allocate tasks, the bandwidth

allocation and the routing path of dataflows. The policies

will be managed by the network controller and the compute

controller together, and then be executed by the Kubelet

and the network manager on the client nodes. The run-time

characteristics of tasks and the nodes’ status will be sent

back to the controller in the master and used for later task

scheduling.

IV. SYSTEM DESIGN

This section illustrates the details of the ENTS system work-

flow, including job profiling, collaborative task scheduling, and

distributed task execution.

A. Application Development and Profiling

To easily parse the user-submitted job and facilitate efficient

distributed task execution, we adopt the data flow program-

ming model [20], where each task in a job is programmed as a

function module. Tasks are loosely coupled with intermediate

data transmission. Note that many modern applications are

modeled in such a way. Those applications are complex in

nature, structured on microservices architecture style, consist-

ing of a large number of inter-dependent and loosely coupled

modules. Besides, to support various kinds of workloads, the

programming model is non-intrusive to the user programming

language. As shown in Fig. 4, we only require developers

to declare the tasks in the submitted job without intruding

on the main functions of the applications. Users can use

any programming language to implement their applications.

Compared with those programming models, which require

users to learn lots of pre-defined operations, such as Hadoop,

Spark, and Flink, ENTS is easier to learn and use.

Users are required to submit the job configuration so that

the system can profile the job and perform efficient task

scheduling. As shown in Fig. 5, the configuration explicitly

defines the data source, dependencies among the tasks, and the

4

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

1 # S t a r t d e f i n i t i o n o f t a s k s
2 d e f t a s k _ 0 (i n p u t) :
3 # User code here . . .
4 r e t u r n True , o u t p u t
5
6 d e f t a s k _ 1 (i n p u t) :
7 # User code here . . .
8 r e t u r n True , o u t p u t
9

10 d e f t a s k _ 2 (i n p u t) :
11 # User code here . . .
12 r e t u r n True , o u t p u t
13
14 d e f t a s k _ 3 (i n p u t) :
15 # User code here . . .
16 r e t u r n True , o u t p u t
17
18 # E x p o r t f u n c t i o n s as j o b
19 j o b = [t a sk_0 , t a sk_1 , t a sk_2 , t a s k _ 3]

Fig. 4: Code Snippet of User Application

resource demand of each task. Particularly, the job consists of

4 tasks. The first task task0 demands 2GB memory and has

subsequent tasks task1 and task2. After the user submits the

job configuration, ENTS will start the profiling. The objective

of job profiling is to estimate the running time of each task

of the submitted job on heterogeneous edge nodes, which will

then be used to support the collaborative task scheduling. Since

it may take much time to profile the job, depending on the

complexity of the job, we do the profiling offline. Specifically,

the profiler will send the job configuration to the edge nodes

that meet the resource requirements of the job. Each edge

node will profile the job by executing the tasks under the

requested resource and send the job profile information back

to the scheduler. Offline profiling is reasonable for those long-

running jobs, such as video analytics [21] and virtual reality

[4]. Other methods can be used to measure the computing

capability of edge nodes and estimate the workload of the

application in advance, which is more suitable for online

application profiling [22] [23]. We will study them in the future

and incorporate the mechanisms into ENTS.

B. Collaborative Task Scheduling

After a job is profiled, it will be added to a Job Queue

and pending to be scheduled, as shown in Fig. 6. The job-

related information, including task dependencies and requested

resources, the available computation resource of edge nodes,

and the status of the network will be sent to the scheduler to

support the collaborative task scheduling decisions. We will

elaborate on the scheduling algorithms in Sec. V.

The scheduler generates the collaborative task scheduling

strategy, which decides where to allocate each task, how much

the allocated bandwidth is, and the routing path together with

the communication port for each data flow. As shown in Fig. 7,

the job shown in Fig. 5 is partitioned into 3 tasks, where task0
and task1 are allocated to edge nodes e1 and e2, respectively.

Task2 and task3 are both allocated to e3. The bandwidth of

data flow f01 and f02 is restricted to 15Mbps and 10Mbps,

1 {
2 j o b : "test" ,
3 image : "userid/ents:ubuntu" ,
4 t o t a l _ m e m o r y _ r e q u e s t : "4GB" ,
5 s o u r c e : "" ,
6 i n p u t _ s i z e : "10"
7 } ,
8 {
9 i d : "task0" ,

10 downstream : "['task1','task2']" ,
11 memory_resource : "2GB"
12 } ,
13 {
14 i d : "task1" ,
15 downstream : "['task3']" ,
16 memory_resource : "2GB"
17 } ,
18 {
19 i d : "task2" ,
20 downstream : "['task3']" ,
21 memory_resource : "2GB"
22 } ,
23 {
24 i d : "task3" ,
25 downstream : "" ,
26 memory_resource : "2GB"
27 }

Fig. 5: Code Snippet of Application Configuration

respectively. The source node port and destination port of flow

f01 are set to be 8089 and 8090, respectively. The routing path

of flow f13 is determined as {e2, e3, e4}.

Once the task scheduling strategy has been determined, they

will be maintained by the compute controller and network con-

troller, respectively, and sent to the edge nodes for execution.

Specifically, the computation resource-related strategies, such

as where to allocate the task and how many resources are

assigned to the task, will be managed by Computer Controller,

which interacts with the Kubelet on edge nodes to ensure

the start, status monitoring, and stop of the containerized

task. The networking resource-related strategies, such as port,

bandwidth, and routing path of data flow, are managed by the

network controller, which interacts with the network manager

on edge nodes to ensure the communication and data transmis-

sion among edge nodes. The two controllers jointly manage

the edge resources and ensure the correct execution of the

collaborative task scheduling strategies with the coordination

of the scheduler.

C. Distributed Task Execution

When the messenger receives the task execution policy,

it will decompose the policies into computation-related and

networking-related policies. The computation-related policies

will be forwarded to and maintained by the Kubelet, while the

networking-related ones will be forwarded to and maintained

by the network manager. Kubeetl and network manager work

together to ensure the proper execution of the assigned task.

One important role of the network manager is to manage

and orchestrate the networking resources. In this work, we

are mainly concerned with the bandwidth allocation and cus-

tomized routing of the cross-node data flows. For cross-node

5

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

Job n . . . Job 2 Job 1
Collaborative

Online Scheduler

1

2

3 4

5

1 2

JobInfo

Compute

Controller

Network

Controller

Strategy

NodeInfo

NetworkInfo

Source

Source

2
e1

e3e2

e4 e5

1

2

3

1

4

5

20 20

5

10 10

15

6

f
45
=6

f
12

=6

f
13
=4

Master Edge Nodes

Fig. 6: ENTS Task Scheduling Workflow

1 {
2 job_name : "test" ,
3 t a s k s : {
4 t a s k _ 1 : {
5 t a s k _ i d : "0" ,
6 s o u r c e _ n o d e : "edge_1" ,
7 s o u r c e _ n o d e _ p o r t : "8089" ,
8 p r e v i o u s _ n o d e : "" ,
9 nex t_node : "edge_2 edge_3" ,

10 n e x t _ n o d e _ p o r t s : "8090 8091" ,
11 bandwid th : "15Mbps 10Mbps" ,
12 r o u t i n g : ""} ,
13 t a s k _ 2 : {
14 t a s k _ i d : "1" ,
15 s o u r c e _ n o d e : "edge_2" ,
16 s o u r c e _ n o d e _ p o r t : "8090" ,
17 p r e v i o u s _ n o d e : "edge_1" ,
18 nex t_node : "edge_3" ,
19 n e x t _ n o d e _ p o r t s : "8092" ,
20 bandwid th : "10Mbps" ,
21 r o u t i n g : "edge_2 edge_4 edge_3"} ,
22 t a s k _ 3 : {
23 t a s k _ i d : "2 3" ,
24 s o u r c e _ n o d e : "edge_3" ,
25 s o u r c e _ n o d e _ p o r t : "8091" ,
26 p r e v i o u s _ n o d e : "edge_1 edge_2" ,
27 nex t_node : "" ,
28 n e x t _ n o d e _ p o r t s : "" ,
29 bandwid th : "" ,
30 r o u t i n g : ""} ,
31 }
32 }

Fig. 7: Collaborative Task Scheduling Strategy

communication, Kubernetes usually adopts a flannel network

[24]. As shown in Fig. 8, a data package from Pod1 to

Pod3 will first be forward to docker0 and then to the flannel

interface. The package will go through eth on edge node A

and be sent to edge node B, where a reverse process will

be performed to analyze the Internal IP of the package and

route the package to the destination, i.e., Pod 3. To achieve

the bandwidth allocation and customized routing of data flow,

for each data flow in a scheduled job, the network manager will

specify the {source_ip, source_ip_port, bandwidth_limit, des-
tination_ip, destination_ip_port}, as shown in Fig. 7. Through

this information, the network manager leverages the Linux

kernel functions, i.e., Traffic Control and Iproute [25], to shape

the bandwidth between two edge nodes and customize routing

for data packages. Traffic control creates Classful Queuing

Disciplines (qdisc) to filter and redirect network packages to

a particular quality-of-service queue before sending them out.

The network manager also maintains the routing table of each

assigned task. As shown in Fig. 8, the data package going

through port 8009 from edge node 1 will be forwarded to

another edge node rather than go directly to the destination,

i.e., edge node 2. Also, the bandwidth of data flow from Pod1

of edge node 1 will be shaped to 3Mbps.

After the network configuration takes effect, the kublet will

launch the pod according to the assigned computation-related

policies, such as CPU and memory requests. The device

monitor and task monitor will consistently and continuously

monitor the status of the devices and the task.

V. COLLABORATIVE TASK SCHEDULING WITH DATA

STREAMING APPLICATIONS

In this section, we showcase the collaborative task schedul-

ing of ENTS with representative data streaming applications,

namely edge video analytics. We first introduce the system

model. Then, we formulate a joint task allocation and flow

scheduling problem for a single job scheduling and illustrate

the proposed algorithms. On this basis, we further propose two

online scheduling algorithms to schedule multiple continuous

arriving jobs to maximize the average job throughput.

A. System Model

Edge video analytics [21] [26] [27] is a killer application

of edge computing. The network and application model used

in formulating the problem is described as follows.

1) Network Model: The communication network is a mesh

network of edge nodes connected using a multi-hop path. The

network is modelled as an undirected graph G = (V,E),
where V is the set of edge nodes, V = {j|1 ≤ j ≤ M},

and E is the set of links connecting different edge nodes,

E = {lu,v|u, v ∈ V }. Here, M is the total number of

edge nodes. The computing capacity, maximum resource and

available resource of edge node j is PSj , Rj
max and Rj

avail,

respectively. The bandwidth of link l is represented by Bl. The

network can be heterogeneous in terms of the computation

capacity of edge nodes and link bandwidth.

6

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

Source IP Destination IP Next Hop IP

192.168.1.100:8009

192.168.1.100:8010

192.168.1.103

192.168.1.103 192.168.1.103

192.168.1.102

.

Customized

Routing

Table

QoS queue

Bw = 3Mbps

QoS queue

Bw = 5Mbps

qdisc root

qdisc pod1

Package

qdisc pod2Customized

Bandwidth

Allocation

MAC

OuterIP

UDP

InnerIP

Payload

Local IP

Pod Network IP

eth0
Pod 1

eth0: 172.16.99.8

eth0

Pod 1

eth0: 172.16.99.8

Edge Node 1

(192.168.1.100)

docker 0

172.16.99.1

veth

veth

flannel1.1

172.16.99.0

eth

Local IP

eth0
Pod 1

eth0: 172.16.99.8

eth0

Pod 1

eth0: 172.16.99.8

Edge Node 2

(192.168.1.103)

docker 0

172.16.99.1

veth

veth

flannel1.1

172.16.99.0
eth

Local IP

Fig. 8: Bandwidth Allocation and Customized Routing of Network Manager

2) Application Model: There will be multiple jobs sub-

mitted to the ENTS system by the edge nodes. Each job is

modeled as a directed acyclic graph J = (T, P), where T is a

set of dependent tasks and P represents the set of dependencies

between the tasks in the job. Pdi denotes the predecessor tasks

of task Ti. The computation workload and resource demand of

task j is Cj and Rj
req . The amount of dependent data between

task j and task i is Di,j . The input data source of job J is

assumed to be located at an edge node sJ |sJ ∈ V .

B. Problem Formulation

The objective of the single job scheduling is to maximize the

throughput of the job by deciding where to allocate each task

of the job, the routing path and bandwidth allocation of each

data flow caused by the intermediate data transmission. If two

dependent tasks are allocated to the same edge node, there will

be no intermediate data transmission and thus no data flow.

The joint task allocation and flow scheduling problem denoted

as P1 is formulated as follows.

max

{
TP =

1

tp

}
(1)

tp = max

{
max
i∈T

(ticomp), max
i∈T,j∈Pdi

(ti,jcomm)

}
(2)

ticomp = Xu
i · Ci

PSu
(3)

ti,jcomm = Xu
i ·Xv

j · Di,j

Blu,v

, j ∈ Pdi (4)

Xu
i ∈ {0, 1}, ∀i, u (5)

Eq. 3 indicates the computation time of task i, where Xu
i

is a binary variable. Xu
i equals to 1 if task i is allocated

to edge node u, otherwise Xu
i equals to 0. Eq. 4 shows the

transmission time of the intermediate data between dependent

task i and j. The throughput is TP = 1
tp

, where tp is

constraint by the maximum transmission and computation time

as indicated by Eq. 2. P1 is a mixed Integrated Non-linear

problem (MINLP), which is proven to be NP-hard in literature.

C. Proposed Solution

To solve the problem P1, we decompose it into two sub-

problems, i.e., allocate each task of the job P2 and decide the

routing path and bandwidth allocation of all the data flows

P3. To solve P2, we use a greedy algorithm to allocate each

task to the edge node, which can provide the least execution

time, including the computation time and the dependent data

transmission time. To solve P3, we first relax it into a convex

problem, which can be solved by convex optimizers, and then

derive the solution for P3.

1) Solving Problem P2: The algorithm to solve P2 is

shown in Algo. 1. For each task in the job, the algorithm

traverses all the edge nodes with satisfied resource capacity

and allocates the task to the edge node with the minimum

execution time, including both computation time and inter-

mediate data transmission time (Line 3-13). For calculating

ti,jcomm, we set the bandwidth between two edge nodes as

the average bandwidth of all routing links. This is reasonable

because the intermediate data flow can have multiple choices

to avoid network congestion. Later, we will adjust the allocated

bandwidth and the routing path of the data flows in a more

fine-grained way in problem P3.

2) Solving Problem P3: After solving P2, we get the data

flows FL, where we can know the number of data flows Nf ,

the source, destination, and data volume of each data flow fi.
We then solve P3 to decide the routing path and bandwidth

allocation of each data flow. The P3 is formulated as follows.

min max
i=1,...,Nf

{
Vi

bi

}
(6)

∑
i

∑
k:l∈Pk

i

biy
k
i ≤ Bl, ∀l (7)

7

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Task Allocation

Input: network G = (V,E), job J = (T, P),
Output: the task allocation policy Ti,j , the data flows

FL
1 Initialize Ti,j ← 0 for all i, j;

2 Query the available resource Rj of all edge nodes;

3 for task Ti in job J = (T, P) do
4 for edge node j in network G = (V,E) do
5 if Rj

avail > Ri
req then

6 Calculate the computation time

ticomp = Ci ÷ PSj ;

7 Calculate the intermediate data transmission

time ticomm = max ti,jcomm using Eq. (4);

8 Calculate the execution time

tjexec = tjcomp + tjcomm;

9 end
10 end
11 Allocate task Ti to node j∗ = minJ{tjexec};

12 Ti,j∗ ← 1;

13 Update Rj∗ for node j∗;

14 end
15 Calculate data flow

fi =< source, destination, datasize > with Ti,j ;

16 Add fi to data flows FL;

17 return Ti,j , FL

∑
k

yki = 1, ∀i (8)

yki ∈ {0, 1}, ∀i, k (9)

where Vi is the size of flow fi and bi is the bandwidth allocated

to flow fi. P
k
i is the collection of all the possible routing paths

of flow fi. y
k
i is a binary variable. yki equals to 1 if flow fi

chooses the kth routing path of P k
i . Note that Eq. 7 indicates

that the sum of allocated bandwidth of all data flows going

through link l cannot exceed its capacity. Eq. 8 and Eq. 9

ensure that a data flow can only choose one routing path.

The problem P3 is still a MINLP problem. Therefore, we

resort to relaxing the integer variable yki to a real variable

yki ≥ 0. We name the relaxed problem P3 − RELAX. Due to

the existence of term bi · yki , the P3 − RELAX problem is still

a non-linear programming problem which is hard to solve. In

the following, we transform the P3−RELAX problem into an

equivalent convex optimization problem.

3) An Equivalent Convex Problem: First, we introduce an

variable TH such that TH = max
i=1,...,Nf

{
Vi

bi

}
. Furthermore,

we introduce another variable qi such that qi = TH · bi, and

variable mk
i = qi · yki . Then, the equivalent problem P3 −

RELAX-CVX is formulated below.

minTH (10)

∑
i

∑
k:l∈Pk

i

mk
i ≤ Bl · TH, ∀l (11)

Algorithm 2: Joint Routing and Bandwidth Allocation

(JRBA)

Input: network G = (V,E), data flows FL,

Output: the routing policy yki , the bandwidth

allocation policy bi, and job throughput JTH
1 Solve P3 − RELAX-CVX and get {T ∗, q∗i ,m

k∗
i };

2 for flow fi in FL do
3 Initialize yki ← 0 for all k;

4 k∗ ← argk maxmk
i ;

5 yk
∗

i ← 1;

6 end
7 Calculate b∗i using Eq. 15;

8 Update Bl according to yk
∗

i , b∗i ;

9 JTH ← maxi=1,...,N

{
Vi

bi

}
;

10 return yki , bi, JTH

∑
k

mk
i = qi, ∀i (12)

mk
i ≥ 0, ∀i, k (13)

qi ≥ Vi, ∀i (14)

All constraint in the P3 − RELAX-CVX is affine, and the

objective function is convex. Therefore, the P3−RELAX-CVX

problem is a convex optimization problem which can be solved

using convex optimizers [28].

However, since we relax the binary integer constraint, the

solution may be that some yki are decimal factions. To solve

the problem, we route the ith data flow to a path k∗ such that

mk∗
i = maxk m

k
i . When the routing path is determined, the

optimal bandwidth allocation policies is given by

b∗i = min

{
Vi∑

i

∑
k:l∈Pk∗

i
Viyk

∗
i

}
, l ∈ P k∗

i (15)

The algorithm to solve P3 is shown in Algo. 2.

D. Online Scheduling

Algo. 1 and Algo. 2 study the task scheduling for one job.

However, in a practical ENTS system, jobs constantly arrive

and share the resource in the network. Our goal is to maximize

the average job throughput. Motivated by this, we propose two

online scheduling algorithms, which run in the ENTS online

scheduler and periodically schedule all arrived jobs.

The online scheduler maintains two job queues: 1) a queue

of jobs that are running, denoted by Qrun, and 2) a queue of

jobs that are waiting to be scheduled, denoted by Qwait. The

two online scheduling algorithms are: 1) schedule the job in

Qwait one by one, and 2) schedule the job in Qwait one by

one but readjust the routing and bandwidth sharing strategy

by considering all the existing and coming data flows in the

edge network.

The first algorithm (OTFS) is shown in Algo. 3. For each

job in the queue Qwait, the algorithm first sorts the job in

descending order of waiting time and schedules the jobs in

8

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: OTFS: Online Task Allocation and Flow

Scheduling

Input: current time curT , network G = (V,E), Qwait

1 Jfinish ← all jobs finishing at curT ;

2 if Jfinish �= ∅ then
3 Release all computing resource and bandwidth

allocated to Jfinish;

4 Update Rj and Bl for network;

5 end
6 if there are jobs arriving at curT then
7 Add jobs arriving at curT to Qwait;

8 end
9 Sort Qwait in descending order of waiting time;

10 for job Ji in Qwait do
11 Call the Task Allocation procedure to get

{Ti,j , FL};

12 Call the JRBA procedure;

13 end

Algorithm 4: OTFA: Online Scheduling Task Alloca-

tion Joint Flow Adjustment

Input: current time curT , network G = (V,E),
Qwait, Qrun

1 Jfinish ← all jobs finishing at curT ;

2 if Jfinish �= ∅ then
3 Release all computing resource and bandwidth

allocated to Jfinish;

4 Update Rj and Bl for network;

5 end
6 if there are jobs arriving at curT then
7 Add jobs arriving at curT to Qwait;

8 end
9 Sort Qwait in descending order of waiting time;

10 for job Ji in Qwait do
11 Call the Task Allocation procedure to get

{Ti,j , FL};

12 end
13 Release all bandwidth allocated to data flows FLrun

in Qrun;

14 Add FL to FLrun;

15 Call the procedure JRBA with FLrun;

sequence (Line 6-9). During scheduling, the algorithm calls

the procedure Task Allocation (Algo. 1) and JRBA (Algo. 2)

in turn (Line 9-13).

The second algorithm (OTFA) is shown in Algo. 4. Different

from OTFS, which makes task scheduling decisions based on

the current status of the computation and networking resource

in the edge network, OTFA jointly manages the existing

data flows and the coming data flows. It first allocates the

computation resources for arriving jobs and then readjusts the

networking resources for all data flows (Line 10-15).

Tracking

& Result

Generation

10

Image

Capturing

1

Object

Detection

2

Color

Recognition

3

Gender

Recognition

4

Behavior

Recognition

5

Color

Recognition

6

Type

Recognition

7

Person

Re-identification

8

Vehicle

Re-identification

9

Fig. 9: Application Graph of Object Attributes Recognition

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Benchmarks: To evaluate the ENTS system, we use a

real-world live video analytics application, i.e., object attribute

recognition [29], which is extensively used in surveillance

of public safety. The application graph is shown in Fig. 9,

where we have 10 functional modules. For modules 2 to 9,

each of them is implemented with a computing-extensive and

resource-greedy DNN model [30] [31]. The application takes

the surveillance video as input and recognizes the attributes

of pedestrians and vehicles in the video, such as the color of

cloth, gender of pedestrians, and type of vehicles. Specifically,

we use MobileNet-V2 [32] as the backbone network for object

detection in module 2. For attribute recognition and object re-

identification, i.e., module 3 − 9, we use Resnet-50 [33] as

the backbone network. We use the Kalman filter to track the

objects in module 10. The resolution of the video is 1920x1080

with 30fps and the size of each video frame is about 6MB.

The application is implemented with Python.

2) Baselines: We compared the proposed method with three

state-of-the-art baselines as follows.

• LeastRequestPriority (LR). It schedules the whole job to

the edge node with the least resource consumption. The

LR policy is frequently used in Kubernetes.

• BalancedResourceAllocation (BR). It schedules the whole

job to the edge node, which can balance the resource

consumption among the edge nodes. BR is used in

Kubernetes to achieve workload balancing.

• Task Partition (TP). It partitions the job and schedules

each task to the edge nodes with the least execution

time, including the transmission time and the computation

time. We adopt the default shortest path to transfer the

intermediate data. When multiple data flows go through

the same link, all flows equally share the link bandwidth.

3) Metrics: We employ two metrics as follows.

• Average Job Throughput. It is the average throughput of

all submitted jobs. It is an important metric to measure

the performance of the scheduling algorithms.

• Average Waiting Time. It is the average waiting time of all

submitted jobs, i.e., the time from the job submitted to the

9

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

Master

e1 e2 e3

VM VM. . .

Virtual Edge Nodes

Physical ServerEdge Nodes 1-3

Fig. 10: Test Environment of ENTS

job scheduled. It is a metric reflecting the effectiveness

of the scheduler and system overhead.

4) Testbed Implementation: To test the system on a large

scale geo-distributed edge environment, we developed a hybrid

testbed with both physical and virtual edge nodes, as shown

in Fig. 10. We use virtual machines to emulate virtual edge

nodes. While numerous virtual edge nodes enable us to test

in a large-scale and network-flexible testing environment, the

incorporation of physical nodes guarantees the fidelity of

the testbed. We leverage Linux Traffic Control to configure

the network topology and bandwidth among the edge nodes.

We vary the network link bandwidth, e.g., from 1Mbps to

10Mbps, to emulate the physical distance among edge nodes.

The intuition is that the bandwidth should be low if two nodes

are far away. Similar idea is also adopted in [34].

Specifically, we randomly generate the network connection

among edge nodes with the average node degree as 3. We

also enable routing and forwarding on each node so that each

node is both a compute node and a router. We use 4 raspberry

pi, 2 Nvidia Jetson Nano, and 2 Nvidia Jetson Xavier NX

to represent physical edge nodes. A PC equipped with four

Intel Cores i9-7100U with 20GB RAM to act as the master

node to manage the edge nodes. Two servers are leveraged

to host virtual machines acting as virtual edge nodes. One is

equipped with Intel(R) Xeon(R) Gold 6128 CPU with 192GB

Memory, another is Intel(R) Core(TM) i9-10900F CPU with

64GB memory. The specifications of the physical devices are

shown in TAB. I.

B. Results and Analysis

We test the performance of the ENTS system and the pro-

posed online scheduling algorithms under various situations.

1) Effects of Number of Edge Nodes: We evaluate the

influence of the number of edge nodes on the average job

throughput and average waiting time to test the scalability of

ENTS. In this experiment, a total of 50 jobs are submitted by

the edge nodes to the master with the arriving rate following

a Poisson distribution with λ = 0.5/second.

As shown in Fig. 11(a), TR, OTFS, and OTFA perform

much better than LR and BR, with higher average throughput.

The average throughput of LR and BR does not exceed 1.

It is because LR and BR do not partition the job, which

leads to the transmission of source video data over a low-

bandwidth edge network. It becomes the bottleneck of the

job throughput. Unlike LR and BR, the other three methods,

TABLE I: Specifications of Physical Devices

Name CPU Memory Performance

Raspberry Pi 1 core 1GB Low
Jetson Nano 6 cores 4GB Low

Jetson Xavier NX 6 cores 8GB Medium
Edge Server-1 64 cores 64GB High
Edge Server-2 128 cores 192GB High

i.e., TP, OTFS, and OTFA, partition the job and enable dis-

tributed job execution, avoiding raw data transmission. OTFA

performs best with the highest throughput among TP, OTFS,

and OTFA. TP shares the bandwidth equally and assigns the

shortest routing path for network flows, which usually leads

to traffic congestion when multiple data flows pass through

the same network link. Instead, OTFS and OTFA optimize the

networking resources by enabling optimal bandwidth sharing

and routing path selection concerning the end-to-end job

throughput. OTFA goes further. It considers all the available

data flows in the network, which can improve the average job

throughput compared to OTFS.

We also observe that the average throughput does not show

a linear growth with an increasing number of edge nodes. Gen-

erally, when the number of edge nodes increases, the network

will have more resources and higher job throughput. However,

the throughput decreases slightly when the number of edge

nodes increases from 10 to 20 and 30 to 40. It is because of the

limited network bandwidth, i.e., 1Mbps with a variance of 0.3
in our experiment. When the number of edge nodes increases,

the number of hops and network links between two edge nodes

also increases, resulting in more bottleneck communication

paths. As shown in Fig. 11(b), when the average bandwidth

of the edge network becomes 10Mbps, such fluctuation of the

average throughput will no longer exist. More specifically, it

shows a linear growth as expected. It is because the network

bandwidth is not the bottleneck anymore, and there are fewer

bottleneck communication paths.

Fig. 11(c) depicts the influence of the number of edge nodes

on the waiting time. When the number of the edge nodes is

below 30, the average waiting time of TP, OTFS, and OTFA is

much smaller than that of LR and BR. The reason is that the

former scheduling policies partition the job and allocate the

task into edge nodes with less abundant resources, improving

resource utilization and the number of jobs executable among

the geo-distributed edge nodes. When the number of edge

nodes is above 30, the total resource is sufficient, where the

average waiting time is dominated by the running efficiency

of the scheduling algorithms. Compared with the LR and BR

algorithms, TP, OTFS, and OTFA are required to traverse

all the edge nodes for each task and solve the formulated

optimization problem, which increases the average waiting

time. However, we observe that when the number of edge

nodes is below 50, the average waiting time is no more than 1
second, and about 2.5 second when the number of edge nodes

is 70, which is still at a low level.
2) Effects of Number of Submitted Jobs: We evaluate the

performance of the average job throughput and wait time with

10

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

Number of Edge Nodes
6050 7040302010

0

0.5

1.0

1.5

2.0

2.5

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(f

p
s)

Number of Edge Nodes
6050 7040302010

Number of Edge Nodes
6050 7040302010

1.5

2.0

2.5

3.0

3.5

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(f

p
s)

1.0

0.5

3

4

5

6

7

A
v
er

a
g
e

W
a
it

in
g
 T

im
e

(s
)

2

0

1

1.0

1.5

2

2.5

3

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(f

p
s)

0.5

0

Number of Edge Jobs
6050 7040302010

Number of Edge Jobs
6050 7040302010

1.0

1.5

2

2.5

3

A
v

er
a

g
e

W
a

it
in

g
 T

im
e

(s
)

0.5

0

1.5

2.0

2.5

3.0

3.5

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(f

p
s)

1.0

0.5

Average Network Bandwidth (Mbps)
1 205 10 15

(a) (b) (c)

(d) (e) (f)

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

Fig. 11: a) Impact of the number of edge nodes on average throughput with average bandwidth 1Mbps. b) Impact of the number of edge nodes on average
throughput with average bandwidth 10Mbps. c) Impact of the number of edge nodes on average waiting time. d) Impact of the number of submitted jobs on
average throughput. e) Impact of the number of submitted jobs on average waiting time. f) Impact of average bandwidth on average throughput.

a changing number of submitted jobs. We set the average

bandwidth as 1Mbps with a variance of 0.3. The number

of edge nodes is 30. The arriving rate of the submitted jobs

follows a Poisson distributed with λ = 0.5/second.

As shown in Fig. 11(d), when the number of submitted

jobs is no more than 30, our method performs similarly to the

baseline. In such cases, the edge resources are relatively abun-

dant, and the proposed methods, i.e., OTFS and OTFA, tend to

yield similar decisions compared with the baseline methods.

However, when there are more jobs, the average throughput of

LR and BR declines dramatically. It is because multiple jobs

compete for limited networking and computation resources.

Without partitioning the submitted jobs and optimizing the

bandwidth allocation and routing path of flows, LR and BR

easily suffer from network congestion and fragmented com-

putation resource usage, degrading the average job throughput

significantly. OTFA performs the best. Compared to TR and

OTFS, OTFA considers optimal bandwidth sharing and routing

path for incoming in addition to existing data flows, which

can further improve the averaging job throughput with better

resource utilization when there are more jobs.

Fig. 11(e) depicts similar trends concerning the performance

in average waiting time. When the number of submitted jobs

is below 50, the average waiting time for all the mentioned

methods is low, i.e., no larger than 0.5 without apparent

fluctuation. We can also see that the waiting time of LR and

BR is shorter than that of TP, OTFS, and OTFA. It is because

the latter three approaches have to traverse all the edge nodes

for each task, which leads to more waiting time for scheduling

jobs. When the number of submitted jobs exceeds 50, TP,

OTFS, and OTFA show consistent average waiting times while

the performance of LR and BR increases significantly. The

reason is that there are no available resources to schedule the

new-coming jobs. The rest of the jobs are required to wait in

the job queue, which results in an increased average waiting

time. Compared to TR, OTFS, and OTFA, the other two

methods, i.e., BR and LR, do not partition the submitted job,

which may easily lead to fragmented resource consumption

and thus serve fewer jobs.
3) Effects of Average Bandwidth: We also evaluate the

performance of the average job throughput with the variance of

the average bandwidth of the edge network. We set the number

of edge nodes as 30 in this experiment and the number of

submitted jobs as 50 with the arriving rate following a Poisson

distributed with λ = 0.5/second.
As shown in Fig. 11(f), the average throughput of all

the methods increases with the average bandwidth. More

specifically, when the average bandwidth of the edge network

is no more than 5Mbps, OTFA outperforms other methods

significantly because it jointly considers and optimizes the

data locality, the networking, and computing resources of

edge nodes. However, when the average bandwidth is above

10Mbps, baselines and proposed methods tend to have similar

performance. It is because the bandwidth is relatively abundant

now. However, OTFS and OTFA are slightly better than LR

and BR, as they optimize the bandwidth allocation and routing

selection for data flows in the edge network. BR outperforms

LR as it aims to achieve balanced resource consumption,

enabling the powerful edge nodes to service more jobs.

11

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

In a nutshell, we evaluated and compared the performance

of ENTS with the state-of-the-art and proposed online al-

gorithms for scheduling streaming jobs. Benefiting from the

ability to consider task dependencies and jointly optimize the

limited coupled computation and networking resources, ENTS

achieves a 43%− 220% improvement in average throughput.

Although the proposed solutions introduce additional overhead

in making the scheduling strategies, they can serve more jobs

when resources of the edge network are limited, which leads

to less averaging waiting time.

VII. RELATED WORK

Container scheduler. The default scheduler of Kubernetes

(K8S) [12] is an online scheduler that implements a greedy

multi-criteria decision-making (MCDM) algorithm. MCDM

scores the available nodes with pre-defined rules and selects

the highest scoring node for scheduling. This scheduling

algorithm performs well in the cloud environment. However,

it lacks features for container scheduling in the edge environ-

ment, such as limited network connections and geo-distributed

and resource-constraint edge nodes. Furthermore, it is not

performance-aware. There are several attempts to tailor the

Kubernetes for the edge. Regarding the resource-constraint

edge environment, MicroK8s and K3s [35] aims to simplify

K8S and provide lightweight K8S distribution. KubeEdge

[36] and OpenYurt extend the K8S capability to the edge by

enabling the virtual network connection between edge servers

and VMs in the cloud. However, those solutions do not change

the core idea of task scheduling of Kubernetes. They are not

application performance sensitive.

Some work tries to improve the scheduling policies for

performance-sensitive edge applications. Santos et al. [37]

tried to extend the default task scheduling strategies in Ku-

bernetes with the ability to sense the network status. They

consider the round trip time information of candidate nodes

to minimize the overall response time of an application

to be deployed. Rossi et al. [17] designed a customized

scheduler leveraging the Monitor, Analyze, Planning, Execute

(MAPE) pattern to deploy applications in a geo-distributed

environment. Wojciechowski et al. [18] proposed NetMARKS,

fulfilling the Kubernetes scheduler with the network-aware

feature. It uses Istio service mesh to collect network metrics,

facilitating scheduling pods on a server and its neighbors

and encouraging co-locating pods [38]. Though these works

consider the network latency between edge nodes, it neglects

the heterogeneous computing capability of edge nodes and

the locality of data sources. Besides, they do not orchestrate

the networking resource, such as bandwidth allocation and

customized routing of data flows.

Task scheduling in cloud-edge infrastructure. Many works

consider dispatching streaming tasks among heterogeneous

edge servers and cloud to minimize the average task com-

pletion time [9], [39]. However, they only consider the inde-

pendent tasks while neglecting the dependency among tasks.

Concerning dependent tasks, Sundar et al. [40] proposed a

heuristic algorithm for scheduling dependent tasks in a generic

cloud computing system by greedily optimizing the scheduling

of each task subject to its time constraint. Wang et al. [41]

developed a deep reinforcement learning-based task offloading

scheme, which leverages the off-policy reinforcement learning

algorithm with a sequence-to-sequence neural network to

capture the task dependency of applications. Nevertheless, they

fail to consider the orchestration of the network flows [19],

which necessarily results in network congestion and prolonged

task completion time. Although there are some works [42],

[43] optimizing the average task completion time and jointly

considering the task allocation and flow scheduling, they do

not optimize the application throughput and lack real-world

system implementation.

To summarize, different from existing works, we jointly

consider the data, computing, and networking resource to max-

imize the throughput of stream applications and proposed and

developed a holistic system to enable application development,

online scheduling, and distributed task execution.

VIII. CONCLUSION AND FUTURE WORK

In this work, we designed and developed ENTS, the first

edge-native task scheduling system, to manage geo-distributed

and heterogeneous edge resources in collaborative edge com-

puting. ENTS extends Kubernetes with the ability to jointly

orchestrate computation and networking resources to optimize

the application performance. ENTS comprehensively considers

both the application characteristics and edge resource status.

We show the superiority of ENTS with a case study on

data streaming applications, in which we formulate a joint

task allocation and flow scheduling problem and propose

two online scheduling algorithms. Experiments on an object

attribute recognition application on a large number of edge

nodes show ENTS achieves improved performance.

In the future, we will improve the work from two as-

pects as follows. On the one hand, we will develop more

advanced algorithms for collaborative task scheduling. Current

algorithms do not allocate resources for tasks, such as how

much memory and CPU periods should be allocated to the

containerized tasks. However, regarding optimization of the

overall resource usage, we have to jointly consider the task

partition and allocation, computing resource allocation, and

networking resource allocation. On the other hand, we will

integrate software-defined networking (SDN) into the network

controller. We use the Linux kernel functions, i.e., Iproute and

Traffic control, to achieve networking resource management

for the network manager. The objective is consistent with

SDN, which provides programming interfaces for conveniently

orchestrating networking resources. Many works [44]–[46] are

exploring integrating SDN with edge computing to facilitate

the management of various edge nodes.

IX. ACKNOWLEDGEMENT

This work was supported by the Research Institute for

Artificial Intelligence of Things, The Hong Kong Polytechnic

University, HK RGC Research Impact Fund No. R5060-19,

and General Research Fund No. PolyU 15220020.

12

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[3] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[4] W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri, “Towards efficient
edge cloud augmentation for virtual reality mmogs,” in ACM/IEEE
Symposium on Edge Computing, 2017, pp. 1–14.

[5] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[6] A. Sacco, F. Esposito, G. Marchetto, G. Kolar, and K. Schwetye, “On
edge computing for remote pathology consultations and computations,”
IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 9, pp.
2523–2534, 2020.

[7] M. Zhang, J. Cao, Y. Sahni, Q. Chen, S. Jiang, and T. Wu, “Eaas: A
service-oriented edge computing framework towards distributed intelli-
gence,” arXiv preprint arXiv:2209.06613, 2022.

[8] Z. Ning, X. Kong, F. Xia, W. Hou, and X. Wang, “Green and sus-
tainable cloud of things: Enabling collaborative edge computing,” IEEE
Communications Magazine, vol. 57, no. 1, pp. 72–78, 2018.

[9] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in edge
computing,” in IEEE Conference on Computer Communications, 2019,
pp. 2287–2295.

[10] J. Zhang, X. Zhou, T. Ge, X. Wang, and T. Hwang, “Joint task scheduling
and containerizing for efficient edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 8, pp. 2086–2100, 2021.

[11] F. Soppelsa and C. Kaewkasi, Native docker clustering with swarm.
Packt Publishing, 2016.

[12] M. Luksa, Kubernetes in action. Simon and Schuster, 2017.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for {Fine-
Grained} resource sharing in the data center,” in USENIX Symposium
on Networked Systems Design and Implementation, 2011.

[14] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp. 50–57, 2016.

[15] E. A. Brewer, “Kubernetes and the path to cloud native,” in ACM
Symposium on Cloud Computing, 2015, pp. 167–167.

[16] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. Leung, “Tailored learning-
based scheduling for kubernetes-oriented edge-cloud system,” in IEEE
Conference on Computer Communications, 2021, pp. 1–10.

[17] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, vol. 159, pp. 161–174, 2020.

[18] Ł. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales,
T. Kim, and M. Hong, “Netmarks: Network metrics-aware kubernetes
scheduler powered by service mesh,” in IEEE Conference on Computer
Communications, 2021, pp. 1–9.

[19] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, and F. Yang,
“Dependency-aware task scheduling in vehicular edge computing,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 4961–4971, 2020.

[20] W. M. Johnston, J. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Computing Surveys, vol. 36, no. 1, pp.
1–34, 2004.

[21] Q. Zhang, H. Sun, X. Wu, and H. Zhong, “Edge video analytics for
public safety: A review,” Proceedings of the IEEE, vol. 107, no. 8, pp.
1675–1696, 2019.

[22] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun, L. Huang,
P. Maniatis, M. Naik, and Y. Paek, “Mantis: Automatic performance
prediction for smartphone applications,” in USENIX Annual Technical
Conference, 2013, pp. 297–308.

[23] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow
task execution time in the cloud using a two-stage machine learning
approach,” IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp.
256–268, 2017.

[24] R. Dua, V. Kohli, and S. K. Konduri, Learning Docker Networking.
Packt Publishing, 2016.

[25] B. Hubert et al., “Linux advanced routing & traffic control howto,”
Netherlabs BV, vol. 1, pp. 99–107, 2002.

[26] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in ACM/IEEE
Symposium on Edge Computing, 2017, pp. 1–13.

[27] M. Zhang, J. Cao, Y. Sahni, Q. Chen, S. Jiang, and L. Yang,
“Blockchain-based collaborative edge intelligence for trustworthy and
real-time video surveillance,” IEEE Transactions on Industrial Infor-
matics, 2022.

[28] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[29] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live video
analytics with workload-adaptive distributed edge intelligence,” in ACM
Conference on Embedded Networked Sensor Systems, 2020, pp. 409–
421.

[30] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[31] L. Yang, Y. Lu, J. Cao, J. Huang, and M. Zhang, “E-tree learning:
A novel decentralized model learning framework for edge ai,” IEEE
Internet of Things Journal, vol. 8, no. 14, pp. 11 290–11 304, 2021.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.

[33] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” arXiv preprint arXiv:1703.07737, 2017.

[34] O. Krajsa and L. Fojtova, “Rtt measurement and its dependence on the
real geographical distance,” in 2011 34th International Conference on
Telecommunications and Signal Processing (TSP). IEEE, 2011, pp.
231–234.

[35] V. Kjorveziroski and S. Filiposka, “Kubernetes distributions for the edge:
serverless performance evaluation,” The Journal of Supercomputing, pp.
1–28, 2022.

[36] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to edge with
kubeedge,” in IEEE/ACM Symposium on Edge Computing, 2018, pp.
373–377.

[37] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
aware resource provisioning in kubernetes for fog computing applica-
tions,” in IEEE Conference on Network Softwarization, 2019, pp. 351–
359.

[38] L. Larsson, W. Tärneberg, C. Klein, E. Elmroth, and M. Kihl, “Impact
of etcd deployment on kubernetes, istio, and application performance,”
Software: Practice and Experience, vol. 50, no. 10, pp. 1986–2007,
2020.

[39] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. Lau,
“Ondisc: Online latency-sensitive job dispatching and scheduling in
heterogeneous edge-clouds,” IEEE/ACM Transactions on Networking,
vol. 27, no. 6, pp. 2472–2485, 2019.

[40] S. Sundar and B. Liang, “Offloading dependent tasks with communica-
tion delay and deadline constraint,” in IEEE Conference on Computer
Communications, 2018, pp. 37–45.

[41] J. Wang, J. Hu, G. Min, W. Zhan, A. Zomaya, and N. Georgalas, “De-
pendent task offloading for edge computing based on deep reinforcement
learning,” IEEE Transactions on Computers, 2021.

[42] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving
low latency in collaborative edge computing,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 3512–3524, 2018.

[43] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial com-
putation offloading in collaborative edge computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1133–1145, 2020.

[44] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and
future directions,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2359–2391, 2017.

[45] X. Li, D. Li, J. Wan, C. Liu, and M. Imran, “Adaptive transmission
optimization in sdn-based industrial internet of things with edge com-
puting,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1351–1360,
2018.

[46] A. Wang, Z. Zha, Y. Guo, and S. Chen, “Software-defined networking
enhanced edge computing: A network-centric survey,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1500–1519, 2019.

13

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2023 at 06:58:08 UTC from IEEE Xplore. Restrictions apply.

