
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024 1251

Bayesian-Driven Automated Scaling in Stream
Computing With Multiple QoS Targets

Liang Zhang , Student Member, IEEE, Wenli Zheng , Member, IEEE, Kuangyu Zheng , Member, IEEE,
Hongzi Zhu , Senior Member, IEEE, Chao Li , Senior Member, IEEE, and Minyi Guo , Fellow, IEEE

Abstract—Stream processing systems commonly work with
auto-scaling to ensure resource efficiency and quality of service
(QoS). Existing auto-scaling solutions lack accuracy in resource al-
location because they rely on static QoS-resource models that fail to
account for high workload variability and use indirect metrics with
much distractive information. Moreover, different types of QoS
metrics present different characteristics and thus need individual
auto-scaling methods. In this paper, we propose a versatile auto-
scaling solution for operator-level parallelism configuration, called
AuTraScale+, to meet the throughput, processing-time latency,
and event-time latency targets. AuTraScale+ follows the Bayesian
optimization framework to make scaling decisions. First, it uses
the Gaussian process model to eliminate the negative influence
of uncertain factors on the performance model accuracy. Second,
it leverages the expected improvement-based (EI-based) acquisi-
tion function to search and recommend the optimal configuration
quickly. Besides, to make a more accurate scaling decision when the
new model is not ready, AuTraScale+ proposes a transfer learning
algorithm to estimate the benefits of all configurations at a new
rate based on existing models and then recommend the optimal
one. We implement and evaluate AuTraScale+ on the Flink plat-
form. The experimental results on three representative workloads
demonstrate that compared with the state-of-the-art methods, Au-
TraScale+ can reduce 66.6% and 36.7% resource consumption, re-
spectively, in the scale-down and scale-up scenarios while achieving
their throughput and processing-time latency targets. Compared
with other methods of optimizing event-time latency, AuTraScale+
saves 26.9% of resources on average.

Index Terms—Auto-scaling, Bayesian optimization, streaming
system.

I. INTRODUCTION

S TREAM processing systems (SPSs), such as Flink [1],
Spark [2], and Storm [3], have been widely used in anomaly

detection, ad-hoc analysis, real-time index building, and many
other scenarios. The data from these scenarios is continuously

Manuscript received 8 February 2023; revised 2 April 2024; accepted 8
May 2024. Date of publication 13 May 2024; date of current version 24 May
2024. This work was supported in part by the National Key Research and
Development Program of China under Grant 2022YFB4501400, and in part
by the National Natural Science Foundation of China under Grant 61972247,
Grant 62172270, and Grant U2333201. Recommended for acceptance by A.
Randles. (Corresponding authors: Wenli Zheng; Kuangyu Zheng; Hongzi Zhu.)

Liang Zhang, Wenli Zheng, Hongzi Zhu, Chao Li, and Minyi Guo are with
the Department of Computer Science and Engineering, Shanghai Jiao Tong Uni-
versity, Shanghai 200240, China (e-mail: zhangliang@sjtu.edu.cn; zheng-wl@
cs.sjtu.edu.cn; hongzi@cs.sjtu.edu.cn; lichao@cs.sjtu.edu.cn; guo-my@cs.
sjtu.edu.cn).

Kuangyu Zheng is with the School of Electronic and Information Engineering,
Beihang University, Beijing 100191, China (e-mail: zhengky@buaa.edu.cn).

Digital Object Identifier 10.1109/TPDS.2024.3399834

Fig. 1. An example of the stream processing scenario. The workflow of a
streaming job. A,B,C,D,E represent five operators in the logical graph of
this job. Xi (X ∈ {A,B,C,D,E}) denotes the ith instance of operator X .

generated at a fast and time-varying rate, then cached by some
messaging system like Kafka, and finally analyzed by a job pro-
gram in stream processing systems (see Fig. 1). The job program
can be modeled into a directed acyclic graph (DAG) composed
of several operators (like map and filter). Each operator can
be executed by multiple instances, whose quantity is called the
operator’s parallelism. When the input data rate changes, the sys-
tem needs to adjust these operator-level parallelism parameters
in a timely manner to guarantee the quality of service (QoS) and
minimize resource usage. Traditionally, those parameters are set
by manual tuning, which takes too much time and easily results
in sub-optimal configurations. Therefore, automated on-demand
scaling technologies have become necessary to find optimized
configurations avoiding both resource waste and QoS violation.

A practical auto-scaling solution in stream processing systems
should fulfill three crucial criteria as follows. 1) Versatility. The
solution should accurately model complex and unknown rela-
tionships between parallelism parameters and diversified QoS
metrics (i.e., throughput, processing-time latency, and event-
time latency mentioned in Fig. 1). 2) Efficiency. Considering
frequent changes in data rates and expensive reconfiguration
overheads, the optimization algorithms used by the solution
should experience as few iterations and time as possible to find
the optimal parallelism configuration to meet diversified QoS
requirements. 3) Robustness. The solution should be robust to
data rate fluctuations, i.e., to make scaling decisions rapidly and
precisely even when a new performance model is not trained
well in the initial phase of the rate changes.

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6788-5857
https://orcid.org/0000-0002-5010-2326
https://orcid.org/0000-0002-5831-6935
https://orcid.org/0000-0001-8657-5064
https://orcid.org/0000-0001-6218-4659
https://orcid.org/0000-0003-0034-2302
mailto:zhangliang@sjtu.edu.cn
mailto:zheng-wl@cs.sjtu.edu.cn
mailto:zheng-wl@cs.sjtu.edu.cn
mailto:hongzi@cs.sjtu.edu.cn
mailto:lichao@cs.sjtu.edu.cn
mailto:guo-my@cs.sjtu.edu.cn
mailto:guo-my@cs.sjtu.edu.cn
mailto:zhengky@buaa.edu.cn

1252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

TABLE I
COMPARISON OF EXISTING AUTO-SCALING SOLUTIONS IN STREAM PROCESSING SYSTEMS

In the literature, some auto-scaling solutions in stream pro-
cessing systems make resource scaling decisions based on QoS
thresholds or specific rules [4], [5], [6], [7], [8] depending on
simple yet indirect metrics, such as backpressure (or conges-
tion) [9], [10], queue size [9], [11] and observed rate [10], [12],
[13], [14], [15]. These metrics can not indicate the true task
processing rate (i.e., the throughput of operator instances), which
may lead to more configuration iterations before requirements
are met and even resource over- or under-provisioning. Some
studies rely on queueing theory models [16], [17], [18], [19],
[20], [21], [22] to model the relationship between the aver-
age total sojourn time (i.e., processing latency) of input data
in stream processing system and parallelism parameters, then
make reconfiguration decision for minimizing latency based on
these models’ estimation. However, their estimation accuracies
heavily rely on strong assumptions about the logical structure of
jobs and data rate distribution. Once these assumptions can not
be satisfied, their decision-making process will converge slowly
and even end up with poor scaling schemes. Reinforcement
learning solutions [23], [24] for resource scaling in the cloud
are too expensive to be suitable for dynamic stream processing
systems. The popular dataflow-based auto-scaling solutions like
DS2 [25] efficiently optimize throughput but do not guarantee
latency requirements. In summary, none of the existing solu-
tions can fulfill the three crucial criteria–versatility, efficiency,
and robustness–for resource auto-scaling in stream processing
systems, as outlined in Table I.

In this paper, we propose a versatile auto-scaling solution, Au-
TraScale+, tailored for the streaming job with varying data rates
to guarantee its throughput, processing-time latency, and event-
time latency requirements. Driven by the Bayesian optimization
framework, AuTraScale+ accurately models the intricate rela-
tionships between QoS metrics and parallelism configurations,
efficiently identifying optimal configurations that guarantee
quality of service while conserving resources. Additionally, con-
sidering the interplay among three QoS metrics, AuTraScale+
follows a specific optimization order. Initially, it determines the
minimum parallelisms for all operators to align throughput with
the input data rate, ensuring a steady state where accumulated
data ceases to increase. Subsequently, AuTraScale+ constructs
a comprehensive benefit model across various parallelism con-
figurations, seeking an optimal parallelism configuration to
fulfill processing-time latency requirements while minimizing

resource consumption. Lastly, within the steady-state system
and with known processing-time latency, AuTraScale+ aims to
identify optimal parallelisms capable of processing redundant
accumulated data within a specified timeframe, thereby main-
taining event-time latency below its threshold.

We tackle three main challenges when designing Au-
TraScale+. First, building an accurate performance model for
throughput and latency is difficult due to the diverse system
environment and job structure. As discussed earlier, existing
throughput metrics and queueing model-based latency models
have their limitations. In AuTraScale+, a new throughput metric
for the operator instance, named the true processing rate [25],
is used to guide parallelism configuration. Moreover, latency
performance models are built based on the Gaussian process,
which can avoid defining model structures in advance and filter
out the interference of underlying uncertainties. Second, vast
operator numbers and parallelism knobs challenge the algorithm
to rapidly find the optimal configuration that meets the QoS
target and minimizes resource usage. To tackle it, AuTraScale+
designs a comprehensive benefit scoring function for evaluating
all configurations and selects the optimal one by comparing
their maximum expected increment (EI). Meanwhile, we adopt
the Bayesian optimization (BO) framework to integrate GP-
based model training and EI-based heuristic searching policy to
improve scaling decisions iteratively. Third, it is unacceptable
to train performance models slowly when the input data rate
rapidly changes, which may cause inaccurate or outdated scaling
decisions and additional reconfiguration costs. Considering the
potential relationship between performance models correspond-
ing to different rates, AuTraScale+ proposes a transfer learning
algorithm to fully use trained models at the old rate to estimate
new samples at the new rate and explore the optimal parallelism
configuration quickly based on these estimations.

We implement and evaluate AuTraScale+ based on the Flink
framework, and the experimental results on three representative
workloads demonstrate its efficacy. Specifically, it can achieve
the throughput target within four iterations at most. On the
premise of ensuring the processing-time latency requirement,
it reduces 66.6% and 36.7% resource usage, respectively, in
the scale-down and scale-up scenarios compared with the state-
of-the-art methods. When event-time latency targets are met
on Yahoo Streaming jobs, AuTraScale+ saves an average of
26.9% parallelism resources compared with the other three

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BAYESIAN-DRIVEN AUTOMATED SCALING IN STREAM COMPUTING WITH MULTIPLE QOS TARGETS 1253

scaling methods. Compared with our earlier version’s traditional
transfer learning method, the more lightweight one achieves
1.17-1.9x speedup and saves 20-84% resource on average at
optimal parallelism configuration.

The main contributions in this work are as follows:
� We abstract the relationship between the parallelism and

QoS metric in streaming systems to a Gaussian process
model, which is trained by the data containing the interfer-
ence due to resource contention, so the prediction results
can be more accurate.

� We propose an automated scaling solution based on
Bayesian optimization to update Gaussian process models
and recommend better parallelisms iteratively for meeting
different QoS targets. The acquisition function is used to
improve the search efficiency of optimal solutions and
reduce reconfiguration costs.

� We propose a lightweight transfer learning algorithm to
make full use of the trained model to find the optimal con-
figuration quickly at a new data rate, significantly reducing
model retraining costs.

The rest of the paper is organized as follows. We elaborate
system model and problem definitions in Section II. Then, we
analyze key challenges and the potential of Bayesian optimiza-
tion in Section III. The design details of AuTraScale+ with
performance models and optimization algorithms are presented
in Section IV. Experimental results are presented and analyzed
in Section V. We discuss related work in Section VI and conclude
the paper in Section VII.

II. SYSTEM MODEL AND PROBLEM DEFINITION

This section describes our system model, including node
roles, architecture components, and some system assumptions.
Then, we define a general resource scaling problem and decom-
pose it into three optimization subproblems based on different
QoS requirements.

A. System Model

We consider a cluster consisting of multiple physical nodes to
run a stream processing job and achieve resource auto-scaling,
as shown in Fig. 2. The logic of a stream processing job includes
several operators, and each can be executed by multiple instances
like Fig. 1.

1) Node Roles. Master: It is a manager responsible for task
scheduling, resource management, and scaling decisions. The
Job Manager component of the stream processing system pro-
vides the first two functions. Among them, Task Scheduler
splits the job into several tasks and allocates them into different
execution nodes (called Workers). Resource Manager manages
the status of all nodes in this cluster to schedule idle nodes or
release used nodes according to Task Scheduler’s requirements.
The master node also incorporates components associated with
auto-scaling, such as the Metric Aggregator, Scaling Manager,
and Policy Controller. These components are responsible for
gathering QoS metrics, determining whether scaling should be
initiated, and making configuration decisions accordingly.

Fig. 2. The system model of AuTraScale+.

Task Worker (T-Worker): It maintains a Task Manager com-
ponent to receive and execute one or more tasks allocated by
Job Manager, then feedback task status and metric information
to the Master node. The resource on the Worker Node is divided
into multiple units (called slots in Flink), and each unit is
responsible for executing a task. Here a task represents a single
operator’s instance or a set of instances from different operators,
which depends on the Task Scheduler’s decision as much as
the mapping between tasks and nodes. The scheduling decision
affects the quality of service of the whole job, but it is beyond
the scope of this paper. We discuss the relationship between
resource scaling and QoS metrics under the same scheduling
decision (using Task Scheduler’s default setting).

Data Worker (D-Worker): It runs the messaging system (like
Kafka or Redis) to cache data from users and then sends them
into Worker nodes following the first-come-first-served rule.
Data Worker is used to relieving the pressure on the Task Workers
when the input data rate is much higher than the processing rate
of the system such that tasks can run smoothly and correctly.
However, it also brings a waiting delay to the input data and
affects the event-time latency users focus on. Therefore, we also
set a metric monitor on it and feedback its status to the Master
Node.

2) Assumptions: We make the following assumptions about
the above system architecture.

QoS threshold: Users can choose single or multiple opti-
mization problems at the same time and set their corresponding
thresholds. When a user wants to optimize both types of latency,
we specify that the event-time latency is greater than or equal to
the processing-time latency.

Balanced load: The streaming systems encapsulate resources
like CPU and memory in the form of slots, which are fixed
subsets each worker’s resources are divided into. Data arriving
at an operator is assigned to its instances, each in a different slot
by specific rules. We assume each instance of the same operator
has the same amount of data, like [17], [25].

No bandwidth limitation: We assume that the network does
not bottleneck the system. In practice, if the network traffic to
a server is too high, meeting the latency requirement for high
responsiveness is usually impossible.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

1254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

TABLE II
THE DEFINITION OF THREE QOS METRICS

Adequate resources: We assume that the cluster resources
are enough to support the QoS requirements of the workload.
It means there is no such situation where all resources are
exhausted, but the QoS requirement is still unable to meet. For
QoS optimization with limited resources, some task scheduling
methods can be considered, such as [29] and [30].

Control period: AuTraScale+ targets for workloads whose
variation period of input data rate is larger than its convergence
time like other controllers [25]. For those workloads that change
on a shorter period, other solutions like backpressure mecha-
nism [1], [31], data buffering or load shedding [32], [33], [34]
may outperform auto-scaling techniques.

B. Problem Definition

We focus on the resource scaling problem on the above
system model when the input data rate changes, which targets
minimizing resource usage and QoS violation. Here, a streaming
job can be modeled as a directed acyclic graph G = (V,E),
where the set of vertices V denote operators and the set of edges
E denote data dependencies between different operators. This
graph will be transformed into a physical execution plan which
maps operators to compute resources according to parallelism
configuration and scheduling strategy (as shown in Fig. 2).
Under a specific scheduling strategy, we discuss the following
resource scaling problem.

Resource Scaling Problem: Given a streaming job (a static and
known DAG) with operators o1, o2, . . ., oN and input data rate λ,
to find out the minimum parallelism πi for each operator oi such
that some QoS metrics satisfy the user-specific requirements.

In this paper, we mainly focus on three critical QoS metrics:
throughput, processing-time latency, and event-time latency.
Their definitions are shown in Table II. Such that, we decompose
the above resource scaling problem into three optimization
subproblems to meet their requirements.
� Throughput optimization (TO): This problem targets to find

the minimum parallelism parameter πt
i for each operator oi

(denote as πt) that allows the throughput to catch up with
input data rate (λ).

� Processing-time latency optimization (PLO): This problem
targets to find minimum parallelism parametersπp

i for each
operator oi (denote asπp) such that the average processing-
time latency (lp) is less than the threshold Lp provided by
the user.

Fig. 3. The logical relation of three optimization subproblems.

� Event-time latency optimization (ELO): According to the
definition, event-time latency is the sum of processing-time
latency and waiting latency (le = lp + lw). Given a fixed lp,
the objective of this problem is to find minimum parallelism
parameters πe

i for each operator oi (denote as πe) so that
the system can consume a proper amount of accumulated
data within a given time limit to decrease lw until le ≤ Le

(Le is the threshold).
Discussion: The solution to TO (πt) gives a lower bound on

the parallelism configuration to ensure the system’s processing
rate can catch up with the input data rate. πt can guarantee the
amount of accumulated data in input/output network buffers of
each operator instance on Task Worker and caching queues on
Data Worker is no longer continuously increasing; hence, two
latency metrics is stable. Therefore, throughput optimization is
a prerequisite for discussing two latency optimization problems,
and πt is the lower bound of the solution configuration for P2
and P3. The waiting time in input/output network buffers on
each instance affects data’s processing-time latency, so we need
to take this uncertain factor into account to solve PLO and obtain
the parallelism configuration πp when lp > Lp. After solving
PLO, we obtain a definite lp and ELO starts to be solved. The
logical relation of three optimization problems is shown in Fig. 3.

AuTraScale+ follows the above logic to achieve resource
scaling in stream processing systems while meeting different
QoS requirements. It tends to propose more accurate perfor-
mance models against interference and more efficient search
strategies for every optimization problem than existing solutions
(see Section IV for details).

III. CASE STUDIES AND OPPORTUNITIES

In this section, we identify the challenges of solving the above
resource scaling problem in streaming systems via case studies,
and introduce the opportunities the Bayesian optimization algo-
rithm brings to address these challenges.

A. Case Studies and Challenges

Following the system model in Section II-A, we built a
testbed in which the Kafka message system was deployed on
the D-worker to cache data, and the Flink streaming system
was deployed on multiple T-workers to process data. We run
a simple WordCount Streaming job containing four operators
(Source, FlatMap, Count, and Sink) on this testbed and monitor
all key metrics (throughput, processing-time latency, event-time
latency, data lag on the D-Worker) to help us obtain valuable
observations.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BAYESIAN-DRIVEN AUTOMATED SCALING IN STREAM COMPUTING WITH MULTIPLE QOS TARGETS 1255

Fig. 4. The running results of the WordCount Streaming job with the fixed
parallelism and increasing data rate: Parallelism under-provisioning leads to
non-trivial data lag and end-to-end latency.

CASE 1: Fixed parallelism and increased data rate to reveal
the consequences of suboptimal configurations.

In this case, the parallelism of each operator is set to 2 and
remains the same. The input data rate starts from 100k records/s
and increases every 10 minutes by 50k records/s. Fig. 4(a) shows
the changes in both the input data rate and throughput, and
Fig. 4(b) shows the changes in the two types of latencies and
the data lag during the experiment.

Observation 1: When the input data rate increases and exceeds
the upper bound of the throughput with the fixed parallelism
configuration, data are accumulated in Kafka, and both types
of latency will continue to increase. Ultimately, this under-
provisioning status results in serious QoS violations.

As shown in Fig. 4(a), when the input data rate is 100k
records/s, 150k records/s, or 200k records/s, the throughput
of the job can meet the input data rate and there is no data
accumulation in the Kafka. In Fig. 4(b), two types of latency
temporarily peak when the job starts and then gradually flatten
out. When the input data rate reaches 250k records/s, the job
throughput begins to lag behind for a short time. The data
begins to accumulate in Kafka, and two types of latency begin to
increase. Then, the input data rate increases to 300k records/s,
which is significantly greater than the fixed parallelism config-
uration’s processing capacity, while the job’s throughput still
maintains at 250k records/s. The growth rate of the accumulated
data in Kafka and two types of latency in Flink increase until
the test ends at the 50th minute.

This case shows that it is necessary to adjust the paral-
lelism configuration and resource allocation when the data rate
changes. The suboptimal configurations will result in under-
or over-provisioning. Lack of resources will result in data pro-
cessing lag and increased latencies, while redundant resources
can be wasted if the data rate decreases. However, dynamically
allocating resources for jobs is challenging, as shown by another
set of our experiments as follows.

CASE 2: Fixed data rate and increased parallelism to identify
the challenges of resource auto-scaling.

We execute six independent small tests on the above testbed,
in which each test’s input data rate maintains at about 300k
records/s, and the operator parallelism is (1, 2, 3, 4, 5, 6)
respectively. The results are shown in Fig. 5.

Observation 2.1: The relationship between operator paral-
lelism and QoS metrics is not linear.

Fig. 5. The running results of the WordCount Streaming job with the fixed
data rate and increasing parallelism. p represents the operator parallelism. 1)
There is a nonlinear relationship between the parallelism and QoS metrics. 2)
The appropriate parallelism brings QoS benefit, but a higher parallelism may
not gain lower latency or higher throughput.

In Fig. 5(a), in the first three sets of tests, the parallelism
is 1, 2, and 3, but the corresponding throughput is about 150k
records/s, 250k records/s, and 275k records/s respectively. The
multiplying growth of parallelism does not provide the propor-
tional increase in throughput. Similarly, the relationship between
processing-time latency and operator parallelism is also not lin-
ear, as shown in Fig. 5(b). The reasons for this phenomenon can
be synchronization and resource competition between different
operator instances.

Observation 2.2: The event-time latency highly correlates
with data lag and processing-time latency.

In the first three tests of Fig. 5(b) (when the throughput cannot
catch up with the data input rate), the event-time latency rises
proportionally with the growth of accumulated data in Kafka. In
the last three tests of Fig. 5(b) (when the throughput is equivalent
to the data input rate), no data is accumulated, and the event-
time latency is likely equal to the processing-time latency. A
similar observation also appears in Fig. 4(b), which motivates
us to optimize event-time latency by consuming accumulated
data after processing-time latency optimization.

Observation 2.3: The appropriate parallelism brings through-
put and latency benefits, and higher parallelism may not be
better.

Comparing the latency between the first three tests and the last
three tests in Fig. 5(b), we find that improving the parallelism is
helpful in reducing two types of latency on the whole. However,
the latter two tests (The latencies are 100 ms and 125 ms, re-
spectively) also indicate that increased parallelism may increase
communication cost [35] and thus increase the processing-time
latency. In Fig. 5(a), the throughput is throttled by the input data
rate in the last three tests, so redundant parallelism is wasted.

Key Challenges: Based on the above case studies, We state
that the relationship between operators’ parallelism (resource
allocation) and different QoS metrics is greatly complicated
by synchronization, resource contention, communication, and
system scheduling policies. The main challenge to identifying
the appropriate parallelism configuration when the workload
changes is dealing with this unknown relationship.

B. Opportunities

To deal with the above challenges, we need a method that can
capture the unknown relationship between resource allocation

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

1256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

and QoS metrics (e.g., throughput and latency), and recommend
the most appropriate parallelism configuration for the applica-
tion. Bayesian optimization (hereinafter referred to as “BO”) is
what we need. First, it uses the surrogate models, such as Gaus-
sian process regression and random forests, to approximate the
real relationship, and does not require the specific mathematical
formula about the objective function and the input variables.
Second, the goal of BO is to find the input variables that op-
timize the objective function with as few rounds of executions
as possible. This is also consistent with the goal of minimiz-
ing reconfiguration overheads caused by scaling decisions in
streaming systems. Therefore, this black-box method to solve
optimizing objective functions is very suitable for auto-scaling
scenario in the streaming system.

Mathematically, Bayesian optimization can be expressed by
(1):

x∗ = arg max
x∈A⊂Kd

f(x) (1)

AuTraScale+ takes the parallelism of each operator as the
input variable x, and takes a scoring function that quantifies the
comprehensive benefits of service quality and resource usage
with the given parallelism as the objective function f . The goal
of AuTraScale+ is to find the most profitable parallelism configu-
ration scheme to maximize the scoring function in the minimum
number of iterations. In this paper, Bayesian optimization also
involves the selection of the surrogate model, acquisition func-
tion and the initial training data, as elaborated in the next section.

IV. DESIGN OF AUTRASCALE+

We elaborate on the details of AuTraScale+ in this section.
The frequently used notations throughout the paper are summa-
rized in Table III.

A. Overview

Recall three scaling-related components on the master node
depicted in Fig. 2, namely the Metric Aggregator, Scaling
Manager, and Policy Controller. AuTraScale+ relies on these
three components to implement resource auto-scaling work-
flow. More importantly, AuTraScale+ integrates three Bayesian-
driven modules (TO Solver, PLO Solver, and ELO Solver)
into the Policy Controller for solving three QoS optimization
problems mentioned in Section II-B.

1) Auto-Scaling Workflow: AuTraScale+ achieves a con-
trol cycle of monitoring, analyzing, planning, and executing
(MAPE) [36]. When the job is running, this control cycle runs
periodically to guide the system to scale in or scale out resources
appropriately for ensuring QoS requirements [37], [38], [39].

Specifically, metric monitors on different workers periodi-
cally gather throughput or latency information and report them
into Metric Aggregator on the Master node (Monitor). Metric
Aggregator selects and integrates the metric information moni-
tored, such as calculating the total processing rate of all instances
of each operator, and sends them to the Scaling Manager. The
Scaling Manager judges whether the resource configuration

TABLE III
SYMBOLS USED IN THIS PAPER

Fig. 6. The design overview of AuTraScale+.

needs to be adjusted and issues a scaling signal to Policy Con-
troller (Analyze). Then Policy Controller runs scaling algorithms
to make a new configuration decision and notifies Task Scheduler
to execute (Plan). Task Scheduler stops and stores the current
status information of the job, then restarts it using the new
configuration. (Execute). This control cycle is driven by scaling
algorithms in Section IV without user participation.

2) Solver Modules: Three solver modules (TO Solver, PLO
Solver, and ELO Solver) in the Policy Controller are designed
to make scaling decisions for ensuring throughput, processing-
time latency, and event-time latency requirements. Their design
details are summarized in Fig. 6. When the Scaling Manager
sends a scaling signal, AuTraScale+ first calls TO Solver to find
minimum parallelisms for all operators to make the throughput
catch up with the input data rate, ensuring accumulated data on
the D-Worker is no longer increasing. Then, the PLO Solver is

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BAYESIAN-DRIVEN AUTOMATED SCALING IN STREAM COMPUTING WITH MULTIPLE QOS TARGETS 1257

called to optimize processing-time latency. Finally, in the steady-
state system with known processing-time latency, ELO Solver
targets to find optimal parallelisms that can consume redundant
accumulated data within a specific time limit so that event-time
latency is lower than its threshold.

Specifically, TO Solver relies on an instance-level rate model
and an iteration solution with forward stepwise along data flow.
First, the instance-level rate model is used to measure the actual
processing rate of each operator instance, eliminating the impact
of data pending time on the rate calculation, and more truly
reflects the instance’s processing ability. Second, TO Solver
calculates the number of instances required for each operator to
reach the target throughput, starting from the data source node
of the DAG and following the data flow direction. This process
is called stepwise iteration optimization in Section IV-B.

PLO Solver follows Bayesian Optimization (BO) framework
to train a benefit model and recommend the better parallelism
configuration using an expected improvement-based acquisition
function iteratively until the processing-time latency is lower
than the threshold (Basic steps). Specifically, the Gaussian
process-based benefit model can cover the impact of interfer-
ence and model the nonlinear relationship between latency and
parallelism more accurately; the acquisition function can speed
up the search process of the solution and minimize the number
of iterations to find the optimal solution. Besides, the PLO solver
can trigger transfer learning-based advanced steps to make more
accurate scaling decisions when the benefit model is not fully
trained in the initial phase of a new data rate.

ELO Solver temporarily increases parallelisms to consume
redundant accumulated data on the Data Worker until the event-
time latency is lower than its threshold after optimizing the
processing-time latency. The key is to find the appropriate paral-
lelism configuration (πe) to consume a specified amount of data
within a given time limit, i.e., reach a specific throughput target
while minimizing resource usage. To this end, in Section IV-E,
ELO Solver first uses a data backlog model to determine this
new throughput target and then calls BO-driven offline profiling
to find the optimal solution.

B. TO Solver

Throughput optimization solver (TO Solver) finds the min-
imum parallelism configuration that allows the throughput to
catch up with input data rate based on the instance-level rate
model and a stepwise iteration solution.

1) Instance-Level Rate Model: In the stream processing sys-
tem, the actual processing rate of an operator is usually defined
as the ratio of the number of processed records over the pro-
cessing time. However, the observed data processing time from
the system’s metric interface often contains a large amount of
waiting time at the input/output buffer of the operator due to
blocking [40] and hence cannot be used directly. Here, we use the
concept of Useful Time in DS2 [25] to define the true processing
rate of an operator instance, which is formulated as (2).

vu =
R

Tu
(2)

where R is the total number of records processed by an operator
instance in a period of time T , and Tu represents the time used
to process data (i.e., Useful Time) in T . Tu includes three parts:
the deserialization time, processing time, and serialization time.
Based on the above definition, we can compute the average
processing rate of all instances of operator i is v̄i = 1

pi

∑pi

j=1 vij .
pi is the parallelism of the operator i and vij is the true processing
rate of the jth instance of operator i. We use v̄i and λi (the
date input rate of operator i) to identify optimal parallelism
configuration.

2) Stepwise Iteration Optimization: We use a stepwise it-
eration solution along data flow [25] to determine appropriate
parallelism for each operator and quickly make the throughput
as close to the input data rate as possible. This method relies on
the true processing rate measurements among all operators and
their instances.

Suppose that operator i− 1 and operator i are two connected
operators in the DAG. The operator i− 1 only contains one
instance, and its total true processing rate vi−1 is equal to its
external input data rate ve and its total output rate oi−1 at time t.
The operator i is the successor of the operator i− 1, and its total
input data rate is λi. There is a simple equivalence, λi = oi−1 =
vi−1. To make the total true processing rate of the operator i
catch up with the input data rate, the number of instances of

operator i can be set to
⌈
vi−1
v̄i

⌉
(v̄i is the average true processing

rate of all the instances of operator i).
However, the parallelism of an operator is greater than one,

and the total true processing rate may not meet the external
input data rate in practice. For this general case, AuTraScale+
uses (3) to calculate the optimal parallelism of each operator in
each iteration step:

p′i =

⎧⎪⎪⎨
⎪⎪⎩

⌈
λ
v̄1

⌉
i = 1⌈

vi−1×
p′
i−1

pi−1
v̄i

⌉
i > 1

(3)

where p′i and p′i−1 are the optimal parallelisms of operator i and
operator i− 1, respectively, at the current iteration step.

The advantage of this approach is to quickly and accu-
rately find the minimum resource configuration that enables the
throughput to meet the requirements. Nevertheless, the through-
put is often constrained by other factors like the key-value
store in third-party systems and can not meet the input data
rate in practice (see the results of the Yahoo Streaming job
in Section V-B for details). The DS2 method does not address
this issue and thus can fall into an infinite loop due to that the
throughput does not reach the target value. Therefore, except
the throughput is greater than or equal to the input data rate,
AuTraScale+ adds a new termination condition to deal with this
situation, i.e., two consecutive identical configurations occur.
We denote the best parallelism configuration found at the end
of the iteration as πt, which is the lower bound of solution
configurations to the processing-time and event-time latency
optimization.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

1258 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

C. PLO Solver

Processing-time latency optimization solver (PLO Solver)
finds optimal parallelisms to meet the processing-time latency
requirement and minimize resource usage using the Gaussian
process model and Bayesian optimization framework.

1) GP-Based Benefit Model: The processing-time latency of
a streaming job is affected by many uncertain factors like op-
erators’ input/output buffer status and performance interference
between them besides the parallelism of operators. Traditional
mathematical models like the queueing model can not model
these uncertain factors. Their strong assumptions about input
data rate distribution and jobs’ logic structure are also not
satisfied in a practical stream computing scenario. Therefore, we
consider obtaining a posteriori distribution of the latency under a
given parallelism configuration instead of a deterministic latency
value for covering underlying uncertain factors. The Gaussian
process (GP) model fits our above needs very well and is proper
to model the relationship of a comprehensive benefit on latency
and resource usage and the parallelism configuration.

Scoring function construction: The simple GP-based latency
model cannot capture the resource usage status, which cannot
help us find the parallelism that meets the latency requirement
while minimizing resource usage. So AuTraScale+ designs
a scoring function to quantify the comprehensive benefits of
processing-time latency and resource usage. We regard this
scoring function as the objective function of the Gaussian pro-
cess model. Specifically, the scoring function needs to satisfy
two basic rules: (a) the lower the latency, the higher the score;
(b) the closer the parallelism is to the basic configuration (the
parallelism for maximizing throughput), the higher the score.
So AuTraScale+ defines the scoring function as (4):

F = α×min

(
1.0,

Lp

lp

)
+ (1− α)× 1

N
×

N∑
i=1

πt
i

pi
(4)

where πt
i represents the minimum parallelism of operator i that

can achieve throughput target, i.e., the solution configuration of
throughput optimization. pi represents the current parallelism
of operator i. lp is the average processing-time latency of data
with the current configuration. Lp is the target processing-time
latency. The first half of the formula is used to judge whether
the current latency meets the requirements, and the second half
is used to prevent the over-provisioning of parallelism. α is an
adjustable parameter indicating the relative importance of the
two targets.

Benefit model building: AuTraScale+ models the relationship
between the comprehensive benefit and the parallelism config-
uration based on the above scoring function and the Gaussian
process model. We assume this benefit model as M, which is
subject to a Gaussian process y ∼ GP (μ(x), k(x, x′)), where
x denotes the parallelism variable and y denotes the benefit
score variable. We adopt the Matern covariance kernel. Given
a available sample set D = {(xj , yj)}tj=1 (Dy = {y1, . . ., yt}
and Dx = {x1, .., xt}), the posterior over y is still a GP dis-
tribution, denoted as p(y | x,D) = N (y | μt(x), σ

2
t (x)). μt(x)

Algorithm 1: BO-Driven Auto-Scaling for PLO.

Input:πt, Lp, w, α, S
Output:πp

1: Initialize parallelism: p = (p1, . . . , pN).
2: Model pre-training using samples in S.
3: Get the BO’s search space Ω.
4: x=(x1, . . . , xN)∈Ω, xi∈ [π′i, Pmax]
5: Get the score threshold: sl ← α+ (1− α)/(1 + w)
6: while true do
7: lp ← Run_Job(p, Td)
8: score← Score_Function(p,πt, lp, Lp)
9: Add (k, score) to the existing set
10: Update the surrogate modelM
11: if lp <= Lp and score >= sl then
12: πp ← p
13: break
14: else
15: pnew←argmaxx∈Ω⊂RN EI(x,M)
16: p← pnew

17: end if
18: end while

and σ2
t (x) are given by (5):

μt(x) = kt(x)
T
(
Kt + σ2I

)−1
Dy

σ2
t (x) = k(x, x)− kt(x)

T
(
Kt + σ2I

)−1
kt(x) (5)

where kt(x) = [k(x1, x), k(x2, x), . . . , k(xt, x)]
T and Kt =

[k(x, x′)]x,x′∈Dx
.

Bootstrapping samples selection: To improve the fitting accu-
racy of the benefit modelM, we need to select the bootstrapping
samples to train the initial model carefully. There are two types
of samples in the initial training set of AuTraScale+. (a) All
operators in a sample have the same parallelism, and different
samples have different parallelisms. First, the parallelism of all
operators is set to πt

max, which is the maximum parallelism
of throughput optimization configuration πt. Then we divide
the remaining parallelism (the difference between the current
parallelism πt

max and the maximum allowable parallelism Pmax

of the system) into M − 1 parts, each of which is called an
interval. The parallelism of all operators in the i-th sample is set
to πt

max+i×interval. Those M samples can help the model
perceive the benefit results of different configurations and also
help us to determine whether the current resources can meet
the processing-time latency requirements. (b) The parallelism
of only one operator is set to Pmax, and the parallelism of other
operators is kept in the basic configuration. There are N such
samples (where N is the number of operators in a DAG) that can
make the model capture the different impact of each operator on
latency as far as possible and have a more precise prediction.

2) BO-Driven Online Scaling: AuTraScale+ adopts the
Bayesian optimization (BO) framework to make resource scal-
ing decisions to meet the processing-time latency requirement
and minimize resource usage (The details are shown in Algo-
rithm 1). It uses a scoring function to evaluate the performance

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BAYESIAN-DRIVEN AUTOMATED SCALING IN STREAM COMPUTING WITH MULTIPLE QOS TARGETS 1259

benefits of different configurations and a surrogate model to fit
the relationship between the parallelism of operators and the
scoring function (as mentioned in Section IV-C1). When the
current resource is over-provisioned or the QoS violation occurs,
the acquisition function of AuTraScale+ will recommend new
parallelism samples for the next job run. Then, the model is
updated using the current metric information. If the termination
condition is not met, AuTraScale+ will iteratively perform the
above process (corresponding to the scaling workflow in Sec-
tion IV-A1). We will introduce the essential parts involved in the
above process as follows.

Acquisition function: The acquisition function aims to find the
next sample closer to the optimal solution. It also balances the
proportion of exploration and exploitation during the sampling
period. In the stream computing scenario, a suitable acquisition
function satisfies the following two conditions: (a) Try to find
the global optimal value; (b) The evaluation cost should not be
too high. AuTraScale+ wants to minimize the expected deviation
from the true maximum to find the global optimal value. How-
ever, its expense is very high when we consider multiple steps
ahead [41]. So AuTraScale+ chooses an alternative, which is
to maximize the expected improvement with respect to the best
value known. Besides, to adjust the proportion of global search
and local optimization, AuTraScale+ introduces parameter ξ in
the expectation of the improvement function [42]. Mathemati-
cally, the acquisition function is defined as (6):

EI(x) =

{
KΦ(Z)+σ(x)φ(Z) If σ(x)>0

0 If σ(x)=0
(6)

K = μ(x)− f
(
x+

)− ξ (6a)

Z =

{ K
σ(x) If σ(x) > 0

0 If σ(x) = 0
(6b)

where μ(x) and σ(x) is the GP mean and standard deviation
at the sample x. Φ(Z) and φ(Z) is the standard normal CDF and
PDF of Z respectively. f(x+) is the best value known.

Termination condition: The termination condition of Au-
TraScale+’s BO algorithm is that the latency requirement is met
and the resource score is greater than the threshold. AuTraScale+
calculates the resource score threshold using the over-allocation
ratio w of the resource specified by the user. w is defined as (7):

Cnow − Copt

Copt
< w ⇐⇒ Copt

Cnow
>

1

1 + w
(7)

where Cnow is the current parallelism and Copt is the optimal
parallelism. Copt

Cnow
is the resource allocation ratio. For a job with

N operators, AuTraScale+ defines the resource allocation ratio as
the mean of the corresponding values of all operators, which can
be expressed as Copt

Cnow
= 1

N ×
∑N

i=1
k′i
ki

. Therefore, the termina-
tion condition of Bayesian optimization is that the latency target
is met and the benefit score surpasses the predefined threshold
as indicated by (8):

F � α+ (1− α)× 1

1 + w
(8)

D. Transfer Learning-Based Improvement for PLO

The performance model mentioned in the above basic steps
of PLO Solver is binded to the specific input data rate λ, which
leads to a lot of time and resources spent in training new models
from scratch when the input data rate changes. At that time, it is
difficult for AuTraScale+ to make accurate scaling decisions in
time due to the model is not fully trained. To tackle this issue,
AuTraScale+ refers to the idea of transfer learning [43], [44]
and fully uses existing trained models on old data rates and
limited samples on the new rate to recommend better parallelism
configurations in the initial phase of the new data rate. The details
are presented in Algorithm 2.

When the input data rate changes, AuTraScale+ first optimizes
throughput to obtain the solution πt and then calls the transfer
learning method. Suppose that there are c− 1 trained models
{Mi}c−1i=1, where the corresponding rate Ratec−1 of the model
Mc−1 is the closest to the new rate Ratec. Dc = {(pt, st)}Tt=1

is an available sample set at the current rate. First, we use model
Mc−1 to calculate the score estimate μc−1(pt) of parallelism
vector pt in the set Dc, denoted as Mc−1(pt). Then we use
the Gaussian Process Regression to train a residual modelM′

c

with the training sample set D′c = {(pt, st − μc−1(pt))}Tt=1.
Next, we use the residual model M′

c and the model Mc−1
to calculate the Gaussian process mean and variance of point
x in the configuration set Ω− Pc respectively. The results
μ′c, σ

′
c(x) and μc−1, σc−1(x) are used to determine the objective

function estimation of the current point x. Finally, the acquisi-
tion function recommends an optimal configuration based on
these estimations. The above procedure is iterated until the
latency target or the maximum number of iterations Num is
reached. The Num is a signal to switch AuTraScale+ from
Algorithm 2 to Algorithm 1 to avoid accuracy loss caused by
the above estimation after the new model is ready.

In the above process, AuTraScale+ directly predicts the mean
and variance of all the parallelisms in the sample space and
uses these values as the inputs of the acquisition function to
recommend a new parallelism configuration. Compared with the
traditional transfer learning method in our earlier version [45],
AuTraScale+ trims the estimation process of the bootstrapping
samples and avoids additional model pre-training costs. This
lightweight method reduces the algorithm’s running time and
further speeds up the scaling decision-making (see comparison
results in Section V-D).

E. ELO Solver

The event-time latency is affected by the amount of accu-
mulated data except the parallelism configuration. The amount
of accumulated data may vary from time to time, leading to
different event-time latency even under the same parallelism.
Therefore, it is impractical to model the event-time latency like
the processing time field. AuTraScale+ targets to reduce the
waiting latency of data on the premise of the processing-time
latency is stable and known, which means to consume accu-
mulated data within a limited time by increasing parallelism
configuration for reaching the event-time latency target. Specif-
ically, AuTraScale+ calculates the amount of accumulated data

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

1260 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

Algorithm 2: The TL-Based Improvement for PLO.

Input:Ω, {Mi}c−1i=1, Dc, Pc, Num
Output:πp or πe

1: while true do
2: function TRAINRESIDUALMODEL(Mc−1, Dc)
3: (kt, st) ∈ Dc

4: μc−1(kt)←Mc−1.predict(kt)
5: D′c ← {(kt, st − μc−1(kt))}Tt=1

6: M′
c ← Gaussian_Process_Regress (D′c)

7: returnM′
c

8: end Function
9: Initial the estimated sample set De ← Dc

10: for each sample x in (Ω− Pc) do
11: μc−1(x), σc−1(x)←Mc−1.predict(x)
12: μ′c(x), σ

′
c(x)←M′

c.predict(x)
13: μc(x) = μc−1(x) + μ′c(x)
14: β ← α|Dc|/(α|Dc|+ |Dc−1|)
15: σc(x) = σ′c(x)

βσc−1(x)1−β

15: De. add(x, μc(x), σc(x))
17: end for
18: pnew←argmaxx∈Ω⊂RN EI(De)
19: Obtain score at the point pnew

20: Dc. add(pnew, score)
21: if The terminational condition is met then
22: break
23: end if
24: num++
25: if num >= Num then
26: Switch to Algorithm 1
27: end if
28: end while

to be consumed (denote as R
(t)
lag) and the target throughput Vt

that can consume dataR(t)
lag within a limited timeTlimit based on

the data backlog model. Then, it performs throughput profiling
offline and adopts the Bayesian optimization framework again to
find the optimal parallelism configuration for meeting the target
throughput Vt. The overall workflow is shown in Algorithm 3.

1) Data Backlog Model: We analyze the relationship be-
tween the amount of accumulated data and event-time latency
by the following data backlog model and deduce the target
throughput Vt that can consume data R

(t)
lag within Tlimit based

on it. According to definitions in Section II-B, the event-time
latency is equal to the sum of the processing-time latency and the
waiting-time latency. In a steady state, i.e., the system throughput
is equal to the input data rate, and the amount of accumulated
data keep steady so that the waiting-time latency is also stable.
Meanwhile, the processing-time and event-time latency are also
stable. At this time, the three types of latencies and the amount
of accumulated data satisfy the relationships shown in (9) and
(10), respectively.

l(s)w = l(s)e − l(s)p (9)

R
(s)
lag = λ× l(s)w (10)

where l
(s)
e , l

(s)
p , l

(s)
w respectively represent the event-time la-

tency, processing-time latency, and waiting-time latency. λ is
the input data rate equal to the system throughput v at the steady
state. R(s)

lag is the amount of accumulated data waiting in the
Data Worker corresponding to the target event-time latency in a
steady state. Equation (10) follows Little’s Law [46], [47] that
states the long-term average number of data in a system is equal
to the long-term average arrival rate of data multiplied by the
average time that the data spends in the system.

Next, AuTraScale+ computes the difference between R
(c)
lag

and R
(s)
lag as the amount of data that currently needs to be

consumed for meeting event-time latency using (11). R(c)
lag is

the current amount of accumulated data in the Data Worker.

R
(t)
lag = R

(c)
lag −R

(s)
lag (11)

Finally, the target throughput Vt that can consume the amount
of data R(t)

lag with the limited time Tlimit can be defined by (12).

Vt = λ +
R

(t)
lag

Tlimit
(12)

2) BO-Driven Offline Profiling: After determining the target
throughput Vt, AuTraScale+ needs to find the appropriate
parallelism to achieve it. Unlike the throughput optimization
in Section IV-B, Vt is much larger than the input data rate λ.
We can not measure the rate information online and compute
the parallelism configuration by the stepwise iteration method.
Therefore, AuTraScale+ conducts an offline profile to obtain the
throughput information under different parallelism. However,
traversing all parallelism configurations is expensive due to huge
search spacePN

max whereN is the number of operators andPmax

is the maximum parallelism allowed by the system. In order
to improve the efficiency of the offline profile, AuTraScale+
considers the Bayesian optimization method again to reduce the
number of iterations and resource consumption. The key parts
of the BO framework are similar to Section IV-C except for the
scoring function. Here, the scoring function is only related to
throughput, as shown in (13):

Ftp =
β

|vt − Vt|+ β
(13)

where vt represents the system throughput corresponding to the
current parallelism. β is a constant used to control the magnitude
of the scoring function variation and can be preferably set as the
same order of magnitude with |vt − Vt|. The range of the scoring
function is (0,1). The closer it is to 1, the closer the current
throughput is to the target, and the better the current parallelism
configuration is. The absolute value ensures that neither too high
nor too low throughput can obtain high scores, so the trained
model can be used to find the optimal configuration that meets
throughput requirement (and therefore the event-time latency
requirement) while preventing resource over-provisioning.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BAYESIAN-DRIVEN AUTOMATED SCALING IN STREAM COMPUTING WITH MULTIPLE QOS TARGETS 1261

Algorithm 3: BO-Driven Auto-Scaling for ELO.
Input:πp, Td, Le, Tlimit, Sp, β, Ω, sl
Output:πe

1: le, l
(s)
p , R

(c)
lag ← Run_Job(πp, Td)

2: if le <= Le then
3: πe ← πp

4: exit
5: else
6: Vt ← λ + (R

(c)
lag − λ× (Le − l

(s)
p))/Tlimit

7: S ← Throughput_Profile(Sp, Vt, β)
8: M← Pretraining_Model(S)
9: while true do
10: p′←argmaxx∈Ω⊂RN EI(x,M)
11: vt ← Throughput_Profile(p′, Td)
12: Ftp ← β

|vt−Vt|+β

13: Add (p′, Ftp) to the existing set
14: Update the surrogate modelM
15: if Ftp >= sl then
16: πe ← p′

17: break
18: end if
19: end while
20: end if
21: Run_Job(πe, Tlimit) � Let le < Le

22: Restart_Job(πp) � Resume steady state

V. EVALUATION

In this section, we elaborate on the experiment environments
for evaluation and present the evaluation results and analyses of
AuTraScale+ compared with other existing methods.

A. Experiment Setup

Machine configuration: We evaluate AuTraScale+ on a phys-
ical cluster composed of 3 Dell PowerEdge R730xd (20-core
CPUs and 256 GB RAM) and 1 Dell PowerEdge R740xd (32-
core CPUs and 256 GB RAM). AuTraScale+ is implemented in
Flink 1.10.0 and Hadoop Yarn 2.7.5. We run Flink applications
in the yarn-per-job mode, which launches Flink within YARN
only for executing a single job. Hadoop and Flink are deployed
on three R730xd machines, one as the Master node and two as
T-Worker nodes. To simulate the real production environment,
we also deploy Zookeeper and Kafka on the other R740xd
machine (i.e., D-Worker node) in a pseudo-distributed mode
to store data. The InfluxDB database on the Master node stores
Flink and Kafka metric information.

Metric collection: Stream processing systems usually provide
users with a metric interface to gather job-running information
or expose metrics to external systems. The monitor component
of AuTraScale+ periodically calls this interface to gather per-
formance metrics like latency and throughput. These metrics
are stored uniformly in a third-party database system, such as
Prometheus and InfluxDB. Besides, we modify the source code
of Flink system to gather the true processing rate of the operator

mentioned in Section IV-B and expose them to the same metric
interface avoiding additional overheads.

Baselines: For throughput optimization, we compare Au-
TraScale+ with the recently proposed method DS2 [25], which
can reach the optimal configuration at most three steps. For
processing-time latency optimization, we compare the efficiency
of AuTraScale+ with the DRS [17] method. DRS targets to
guarantee end-to-end processing-time latency and minimize re-
source usage based on the queuing theory and greedy algorithm
during the auto-scaling process. However, its accuracy relies
heavily on strong assumptions of queuing theory and is easily
affected by uncertain factors like network buffer. Moreover,
we also compared the performance of the lightweight transfer
learning (TL) method proposed in this paper with the traditional
TL method in the earlier version [45]. For event-time latency
optimization, we compare AuTraScale+ with the following three
straw-man solutions.

1) Max consumes the accumulated data using the maximal
allowable parallelism of the system.

2) Proportion adjusts the parallelism based on the ratio of
current throughput to target throughput.

3) Exponent increases the parallelism exponentially until the
throughput target is reached.

They all aim to find the parallelism configuration to achieve
the target throughput and consume the accumulated data to
meet the event-time latency requirement. To simplify the time
complexity analysis, we assume that the number of operators in
the workload is N , and the algorithm iterates M times in con-
figuration adjustment. The time complexity of Max, Proportion,
and Exponent solution isO(N),O(NM),O(NM) respectively.
In contrast, Bayesian optimization used by AuTraScale+ has a
higher time complexityO(N2 M) [48] but brings good resource
benefits (see Section V-E for details). Moreover, as shown in
Table V of Section V-F, the overhead of the BO algorithm is
completely acceptable in our experiment.

Benchmarks: We use three representative workloads to verify
the performance of AuTraScale+. WordCount Streaming Job has
a simple linear DAG structure containing four operators: Source,
FlatMap, Count, and Sink. Yahoo Streaming Benchmarks [49] is
an advertisement event processing case, and we use an extended
version [50] that contains five operators: Source, FlatMap (Parse
data), Filter, Project, and FlatMap (Join data). Nexmark [51] is a
benchmarking suite of Apache Beam that contains multiple con-
tinuous data stream queries. We use Query5 (sliding window)
and Query11 (session window) to evaluate the special operators.

B. Throughput Optimization

To verify the effect of our throughput optimization method
in Section IV-B, we run four workloads: WordCount, Yahoo,
Nexmark-Query5, and Nexmark-Query11. The initial paral-
lelisms of all operators for four workloads are set to 1, and the
stabilization time after reconfiguration is 5 minutes. The input
data rates of the four jobs are set to 350k records/s, 60k records/s,
30k records/s, and 100k records/s, respectively.

After the job starts with initial parallelism, if the throughput is
lower than the input data rate and running time is greater than 5

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

1262 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

Fig. 7. (a) Throughput optimization results for different workloads. n repre-
sents the number of iterations. Because of the data backlog in Kafka, Word-
Count’s throughput is temporarily higher than the targe. The throughput of
Yahoo jobs is limited by Redis’s read/write rate and cannot reach the target rate.
(b) Throughput optimization process for Yahoo Streaming job. In the fourth
iteration, the parallelism is p4 (40, 1, 1, 1, 40) again, and the algorithm is
terminated. When the parallelism is larger, p5(40, 40, 40, 40, 40) and p6(50,
50, 50, 50, 50), the throughput does not continue to increase.

minutes, the Scaling Manager will inform the Policy Controller
to call the throughput optimization method and return new
parallelism. The Task Scheduler receives the new configuration
and restarts the job. After running 5 minutes, if the Scaling
Manager detects that the current throughput is greater than the
input data rate or the current parallelism is the same as the last
iteration, the throughput optimization will terminate.

When the throughput optimization algorithm is terminated,
the operator parallelism of the four workloads are (3, 4, 12,
10), (40, 1, 1, 1, 40), (1, 18), (1, 11). Fig. 7(a) shows the
final throughput of the job and the number of iterations. For
WordCount job, the data accumulated in Kafka due to not being
processed in time are also processed with the newly arrived data
under the current optimized configuration, so its throughput will
be higher than the input data rate. Due to the limitation of the
read/write rate of Redis, the optimal throughput of the Yahoo
streaming job cannot reach the input data rate. In this situation,
the parallelism obtained at the end of the iteration is not always
optimal. Therefore, AuTraScale+ reviews the iterative process
and selects the solution with maximum throughput and less
resource utilization as the final result. In Fig. 7(b), the parallelism
p2 (4, 2, 1, 1, 34) is selected as the final optimal configuration.
The experiment after the 35th minute in Fig. 7(b) is to verify that
higher parallelism does not lead to throughput optimization.

From the results, AuTraScale+ can achieve the optimal
throughput with four iterations at most. Although the conver-
gence is slower than DS2 (three iterations at most), AuTraScale+
can terminate the iteration when external factors limit the
throughput to prevent the resource waste caused by the infinite
loop of the algorithm.

C. Processing-Time Latency Optimization

We use WordCount and Yahoo streaming jobs to evaluate the
performance of Bayesian optimization-driven scaling method
in this section. AuTraScale+ trains the initial model using the
bootstrapping samples and iteratively updates the model as the
job runs. When a QoS violation occurs or the benefit score is
below the threshold, AuTraScale+ starts scaling up or scaling
down by adjusting the parallelism configuration. We do the

Fig. 8. Processing-time latency comparison of optimal configuration for dif-
ferent methods in elasticity tests. DRS_Up_o represents the final optimized
configuration found by running the DRS method with the observed rate in the
scale-up test. DRS_Down_t represents the final optimized configuration found
by running the DRS method with the true rate in the scale down test, and so on.

Fig. 9. Parallelism comparison of optimal configuration for different methods
in elasticity tests. Up_max represents the max parallelism of optimal config-
uration in the scale-up test. Down_total represents the sum of all operators’
parallelism in optimal configuration in the scale-down test.

experiments with two jobs: WordCount job (target throughput
is 350k records/s and target processing-time latency is 180 ms)
and Yahoo job (target throughput is 34k records/s and tar-
get processing-time latency is 300 ms). The parallelisms are
set differently to test scaling up and down, respectively. The
initial training set of two jobs contains 10 and 40 samples,
respectively. AuTraScale+ terminates when the processing-time
latency, throughput, and benefit scores meet the requirements
concurrently. The benefit score is 0.9, and the running time of
each parallelism configuration is 10 minutes. The DRS method
with either the true or the observed processing rate is used for
comparison. It runs until the processing-time latency meets the
requirements or the total number of parallelisms in the new
configuration exceeds the upper limit of resources.

We can get the following information from the results. First,
Table IV shows that AuTraScale+ can find a parallelism config-
uration that meets QoS requirements in fewer steps as long as the
resources are sufficient. The more training samples, the fewer
iterations. Second, Fig. 9 shows that the optimal parallelism that
meets the QoS requirements of AuTraScale+ consumes fewer
resources than the DRS method for most tasks. AuTraScale+
can reduce 66.6% and 36.7% resource consumption respectively
in the scale-down and scale-up scenarios. Although the true
rate version of DRS can find solutions that use fewer resources
than AuTraScale+ in the WordCount scale-up experiment, it can
not meet the throughput requirements. Third, Fig. 8 shows that
less parallelism may bring better latency benefits. It is worth
noting that sometimes DRS does not meet the QoS requirement.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BAYESIAN-DRIVEN AUTOMATED SCALING IN STREAM COMPUTING WITH MULTIPLE QOS TARGETS 1263

TABLE IV
COMPARISON OF OPTIMAL CONFIGURATION IN THE SCALING TEST FOR WORDCOUNT AND YAHOO STREAMING JOBS

TABLE V
THE EXPERIMENT SETUP OF THE TRANSFER LEARNING ALGORITHM

COMPARISON

It shows that the error of the queueing model becomes more
significant in complex resource mapping schemes. In contrast,
the Gaussian process model used by AuTraScale+ has better
performance.

D. Transfer Learning-Based Improvement

We compare the performance of the lightweight transfer learn-
ing acceleration with the traditional transfer learning method in
our earlier study [45] by performing processing-time latency
optimization when the input data rate changes. For each of the
four workloads mentioned in Section V-A, we run two transfer
learning algorithms independently to explore the optimal paral-
lelism that meets the processing-time latency requirement at a
changed input data rate. The experimental setup is summarized
in Table V. We first train models at an old input data rate
and get a set of actual samples at the new rate as inputs of
the transfer learning algorithm. Then we adopt two different
transfer learning algorithms to explore the new parallelism
configuration to reach the latency target at the new input data
rate. We record the throughput, processing-time latency, the
number of iterations, the running time of the algorithm, and
other related information during the execution of workloads.
When the latency requirement is met, the algorithm terminates
and outputs the optimal parallelism.

We compare the final results (parallelisms and the numbers
of iterations) of the two transfer learning algorithms in Fig. 10.
From the results, we find that for WordCount and Nex-Q11
workload, the lightweight algorithm saves about 30% paral-
lelism resource with only one more iteration. For the Yahoo
Streaming workload, the lightweight algorithm achieves better
parallelism with less than one-third of iterations. For Nex-Q5,
the final parallelism of the lightweight algorithm is just a little
bit worse than the traditional one, but it saves 80% of iterations.

Fig. 10. The comparison of the transfer learning algorithm between traditional
one and lightweight one. Speedup is the ratio of the average running time of the
traditional algorithm over that of the lightweight one.

In addition, the execution efficiency of the lightweight algorithm
is higher than the traditional one, as shown in Fig. 10(b). Specif-
ically, the lightweight algorithm achieves 1.17x-1.9x speedup
on average per iteration and saves 20%-84% CPU resources in
all iterations except Nex-Q11. On the whole, the lightweight
algorithm outperforms the traditional one.

E. Event-Time Latency Optimization

We use Yahoo Streaming Job to evaluate the event-time la-
tency optimization algorithm. First, AuTraScale+ constructs an
initial set of the parallelisms referring to Section IV-C1 and con-
ducts an offline profile to obtain the throughput corresponding to
different parallelism. After that, we set the input data rate to 40%
of the maximum system throughput, set the stabilization time af-
ter reconfiguration to 3 minutes, and start the Yahoo Job with the
initial parallelism of every operator set to 1. Initially, the system
runs with under-provisioned resources, and AuTraScale+ will
sequentially execute throughput and processing-time optimiza-
tion. Then AuTraScale+ calls Algorithm 3 to stabilize the event-
time latency below the target value. The running process for the
other three comparison methods (Max, Proportion and Expo-
nent) are the same in general, and they adjust the parallelisms
to optimize the event-time latency according to the strategies in
Section V-A respectively. The control variable method is used
for analysis under different conditions. We mainly consider three
types of variables: the initial size of accumulated data (6/12/16
million records for small/medium/large size), event-time latency

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

1264 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

Fig. 11. The comparison of different methods for event-time latency opti-
mization. The tuple (x,y) on the x-axis represents event-time latency target
(x ms) and time limit (y minutes). The red cross indicates a method did not
achieve the event-time latency target in time. Note that there is no positive or
negative correlation between the optimization time and the total parallelism of all
operators because potential redundant parallelism may not increase throughput
or even decrease throughput due to resource contention.

target (250 ms, 500 ms, and 1000 ms), and the time limit (6 min,
8 min, 10 min).

The experimental results are shown in Fig. 11. The opti-
mization time in Fig. 11(a) represents the time consumed by
optimizing event-time latency using the optimal parallelism con-
figuration found by the algorithm. The parallelism in Fig. 11(b)
represents the total number of all operators’ parallelism corre-
sponding to the optimal configuration found by the algorithm.
We can draw the following conclusions. First, AuTraScale+ can
complete event-time latency optimization within the same time
limit as Max and Exponent. Proportion, which adjusts paral-
lelisms according to throughput ratio and ignores the impact
of resource interference, is conservative and results in some
timeouts during the optimization as shown in Fig. 11(a). Second,
AuTraScale+ uses fewer resource to meet the event-time latency
target. Specifically, AuTraScale+ saves 21.9%, 9.3%, and 49.5%
parallelism resources on average compared with Exponent, Pro-
portion, and Max, respectively. From Fig. 11(b), we also find
that AuTraScale+ shows a greater advantage when there is more
accumulated data, and it is comparable to other methods even
in the worst case. Exponent is radical and tends to allocate more
resources to jobs compared with AuTraScale+ and Proportion.

Although the time limit varies from 6 to 10 minutes in the
above experiments, it can be extended to other appropriate values
according to the system state and user demand. When the time
limit is too tight, the parallelism and resource utilization keep at
a high level until the event-time latency meets the requirement,
which may affect the performance of other jobs in the cluster.
Conversely, when the time limit is too loose, the tedious opti-
mization may impair the user experience. The tradeoff between

TABLE VI
COMPUTATION OVERHEADS IN SECOND AT THE DIFFERENT NUMBER OF

OPERATORS

resource utilization and QoS mainly depends on the service
provider and is out of the scope of this paper.

F. Overheads

Our solution directly calls the native metric group interface
of Flink to expose the true processing rate information to the
outside, so it does not bring additional overhead to the sys-
tem. Users can get the rate information by the path taskman-
ager_job_task_trueProcessingRate like accessing other native
metrics in Flink.

To evaluate the running overhead, we run all algorithms with a
different number of operators to obtain the consumed CPU time.
We repeat the experiment 100 times to eliminate the influence
of random factors. The results are listed in Table VI, where BO
represents the Bayesian optimization method and TL represents
the Transfer learning method. On the whole, the running over-
head of all algorithms increases approximately linearly with the
number of operators, attributable to the expanded solution search
space. The CPU time consumption is less than 90 ms when the
number of operators is less than 10, and can stay within 1 s within
reasonable predictions. This magnitude does not significantly
impact the quality of service (QoS) of the tested job. Besides,
the overhead associated with the lightweight transfer learning
method (Algorithm 2) consistently remains lower than that of the
traditional method with an equivalent number of operators, thus
highlighting the superiority of the lightweight transfer learning
method once more.

VI. RELATED WORK

A. Resource Scaling in Traditional Cloud Systems

Cloud systems provide the service for users in the form of vir-
tual machines (VMs) or more lightweight containers. When the
workload varies over time, the manager can add/remove physical
resources to/from these virtual resource units (Vertical Scaling)
or directly add/remove these virtual resource instances (Hori-
zontal Scaling) to avoid the QoS degradation [52]. There are
two types of auto-scaling techniques, reactive and proactive, to
guide the manager when and how to execute vertical/horizontal
scaling.

The reactive techniques trigger resource scaling when the
collected metric information does not reach the target. These
metrics include CPU utilization [53], response time [54], mes-
sage queue status [55], and their thresholds can be dynamic [56],
[57], or hierarchical [58] for better tuning scaling decisions. The
simple method to make scaling decisions is table look-up, but it
has low scalability and fails to use in practical [59]. There are

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: BAYESIAN-DRIVEN AUTOMATED SCALING IN STREAM COMPUTING WITH MULTIPLE QOS TARGETS 1265

many more effective methods have been proposed, including
learning-based [23], [24], [60], [61], control theory [62], fuzzy
control [63], [64], and model-based [65], [66].

The proactive techniques predict QoS metrics or workloads
near future and make scaling decisions according to these pre-
dictions. Queuing theory is often used to build performance
models for prediction relying on the system simulation and
the observation that request arrivals follow the Poisson distri-
bution. The scaling methods usually adopt single-tiered [67],
or multi-tiered [66], [68] queuing models according to their
workload characteristics. Petri nets [69], [70] is also used to
compute a compromise plan between several adaptation plans.
Time series analysis techniques like autoregressive integrated
moving average (ARIMA) [71] and diversified machine learning
methods [72], [73], [74] are used to estimate future workload
fluctuation and help resource managers proactively plan re-
source allocation for the next time interval.

The above resource scaling solutions in traditional cloud
systems mainly focus on throughput optimization based on
their workload characteristics and requirements. Applying these
solutions to resource scaling problems in streaming systems will
lead to severe and inevitable latency violations due to inaccurate
performance modeling without latency consideration. Latency
violations significantly decrease user satisfaction and cause sub-
stantial financial losses, which can be fatal for streaming applica-
tions. Therefore, it is essential to design latency-aware resource
scaling schemes for streaming systems, as AuTraScale+ does.

B. Resource Scaling in Stream Processing Systems

The workloads in stream processing systems change more
frequently and are more sensitive to latency violation than
in traditional cloud computing. Therefore, the threshold-based
scaling methods [4], [5], [6] focus on not only traditional
metrics like CPU utilization [12][26], memory utilization [26]
and throughput [10], but also other latency-related metrics like
network congestion status [10], [27] and backpressure [10].
Some other methods define new metrics, such as the Effective
Throughput Percentage(ETP) in Stela [13].

The model-based methods mainly use queuing theory, such
as Kingman’s formula and Jackson open queueing networks, to
model the end-to-end latency of the system as prior work [16],
[17], [21], [22]. These methods predict the latencies obtained
by different schemes before the scaling action and find the best
one to execute. However, uncertain factors like network buffer
status and interference between multiple tasks can easily affect
their accuracy.

Besides, some rule-based scaling methods [7], [8], [9], [14]
are used in practical stream processing scenarios. Dhalion [9]
detects system bottlenecks by analyzing metrics such as the
backpressure, then generates a diagnosis and selects a scaling
plan according to the self-defined rule. Google Dataflow [14]
heuristically adjusts the number of workers in a cloud envi-
ronment based on several signals, such as CPU utilization, the
amount of work remaining, and throughput. Based on the data
flow model, DS2 [25] determines the appropriate parallelism

for Apache Flink and Timely Dataflow according to the in-
put data rate and the true processing rate of the operator. A
topology-based scaling policy [28] for Apache Storm makes
up for some drawbacks of rebalance command and improves
scaling performance.

Compared to existing work, the superior performance of
AuTraScale+ comes from more accurate performance modeling
and a more efficient scaling decision process. AuTraScale+ mod-
els the relationship between performance and resource allocation
as a Gaussian process covering performance interference caused
by resource contention. This modeling method is more suit-
able for complex application environments than those that rely
on fixed-structure mathematical formulas like queuing models.
Meanwhile, AuTraScale+ capitalizes on the effectiveness of the
Bayesian optimization for exploring better configurations with
fewer iterations within an expansive parameter space, thereby
expediting the decision-making process for resource scaling.
Besides, AuTraScale+ is the first effort to optimize event-time
latency, significantly improving the user satisfaction of real-time
applications.

VII. CONCLUSION

This paper studies the resource auto-scaling problem for
dynamic workloads in the stream processing system. The goal is
to find an appropriate parallelism configuration for a streaming
job with the new data rate to meet three QoS metric targets
(throughput, the processing/event-time latency) while minimiz-
ing resource usage. To achieve it, our versatile solution, called
AuTraScale+, uses the Gaussian process to build performance
models and follows the Bayesian optimization framework to
make scaling decisions. Experiment results on representative
workloads show that AuTraScale+ outperforms existing scaling
methods on resource-saving and accuracy. For future work,
we will investigate efficient methods to predict the fluctuation
of input data rates for guiding scaling decisions to minimize
reconfiguration probability over the near future.

REFERENCES

[1] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.
Tzoumas, “Apache flink: Stream and batch processing in a single engine,”
Bull. IEEE Comput. Soc. Tech. Committee Data Eng., vol. 36, no. 4,
pp. 28–38, 2015.

[2] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized
streams: Fault-tolerant streaming computation at scale,” in Proc. 24th ACM
Symp. Operating Syst. Princ., 2013, pp. 423–438.

[3] “Storm.” Accessed: May 17, 2024. [Online]. Available: https://storm.
apache.org/

[4] Y. Mao et al., “StreamOps: Cloud-native runtime management for stream-
ing services in bytedance,” in Proc. VLDB Endowment, vol. 16, no. 12,
pp. 3501–3514, 2023.

[5] J. Liu, Q. Wang, S. Zhang, L. Hu, and D. Da Silva, “Sora: A latency
sensitive approach for microservice soft resource adaptation,” in Proc.
24th Int. Middleware Conf., 2023, pp. 43–56.

[6] M. R. Hossen, M. A. Islam, and K. Ahmed, “Practical efficient microser-
vice autoscaling with QoS assurance,” in Proc. 31st Int. Symp. High-
Perform. Parallel Distrib. Comput., 2022, pp. 240–252.

[7] W. W. Song, T. Um, S. Elnikety, M. Jeon, and B.-G. Chun, “Sponge:
Fast reactive scaling for stream processing with serverless frameworks,”
in Proc. USENIX Annu. Tech. Conf., 2023, pp. 301–314.

[8] A. F. Baarzi and G. Kesidis, “Showar: Right-sizing and efficient scheduling
of microservices,” in Proc. ACM Symp. Cloud Comput., 2021, pp. 427–441.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

https://storm.apache.org/
https://storm.apache.org/

1266 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

[9] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy, “Dhalion:
Self-regulating stream processing in heron,” in Proc. VLDB Endowment,
vol. 10, no. 12, pp. 1825–1836, 2017.

[10] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6,
pp. 1447–1463, Jun. 2014.

[11] D. J. Abadi et al., “The design of the borealis stream processing engine,”
in Proc. Conf. Innov. Data Syst. Res., 2005, 2005, pp. 277–289.

[12] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P.
Valduriez, “Streamcloud: An elastic and scalable data streaming system,”
IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2351–2365,
Dec. 2012.

[13] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling stream processing systems
to scale-in and scale-out on-demand,” in Proc. IEEE Int. Conf. Cloud Eng.,
2016, pp. 22–31.

[14] M. Dvorský and E. Anderson, “Comparing cloud dataflow
autoscaling to spark and hadoop,” 2016. [Online]. Available:
https://cloud.google.com/blog/products/gcp/comparing-cloud-dataflow-
autoscaling-to-spark-and-hadoop

[15] D. Sun, H. He, H. Yan, S. Gao, X. Liu, and X. Zheng, “LR-stream: Using
latency and resource aware scheduling to improve latency and through-
put for streaming applications,” Future Gener. Comput. Syst., vol. 114,
pp. 243–258, 2020.

[16] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing with
latency guarantees,” in Proc. IEEE 35th Int. Conf. Distrib. Comput. Syst.,
2015, pp. 399–410.

[17] T. Z. Fu, J. Ding, R. T. Ma, M. Winslett, Y. Yang, and Z. Zhang, “DRS:
Auto-scaling for real-time stream analytics,” IEEE/ACM Trans. Netw.,
vol. 25, no. 6, pp. 3338–3352, 2017.

[18] T. De Matteis and G. Mencagli, “Keep calm and react with fore-
sight: Strategies for low-latency and energy-efficient elastic data stream
processing,” ACM SIGPLAN Notices, vol. 51, no. 8, pp. 1–12,
2016.

[19] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
replication and placement for distributed stream processing systems,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 44, no. 4, pp. 11–22,
2017.

[20] V. Cardellini, M. Nardelli, and D. Luzi, “Elastic stateful stream process-
ing in storm,” in Proc. Int. Conf. High Perform. Comput. Simul., 2016,
pp. 583–590.

[21] Z. She, Y. Mao, H. Xiang, X. Wang, and R. T. Ma, “Streamswitch: Fulfilling
latency service-layer agreement for stateful streaming,” in Proc. IEEE
Conf. Comput. Commun., 2023, pp. 1–10.

[22] K. Razavi, M. Luthra, B. Koldehofe, M. Mühlhäuser, and L. Wang, “FA2:
Fast, accurate autoscaling for serving deep learning inference with SLA
guarantees,” in Proc. IEEE 28th Real-Time Embedded Technol. Appl.
Symp., 2022, pp. 146–159.

[23] Z. Wang et al., “Deepscaling: Microservices autoscaling for stable CPU
utilization in large scale cloud systems,” in Proc. 13th Symp. Cloud
Comput., 2022, pp. 16–30.

[24] H. Qiu et al., “{AWARE}: Automate workload autoscaling with reinforce-
ment learning in production cloud systems,” in Proc. USENIX Annu. Tech.
Conf., 2023, pp. 387–402.

[25] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, and
T. Roscoe, “Three steps is all you need: Fast, accurate, automatic scaling
decisions for distributed streaming dataflows,” in Proc. 13th {USENIX}
Symp. Operating Syst. Des. Implementation, 2018, pp. 783–798.

[26] T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak, and C. Fetzer, “Online
parameter optimization for elastic data stream processing,” in Proc. Sixth
ACM Symp. Cloud Comput., 2015, pp. 276–287.

[27] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware
elastic scaling for distributed data stream processing systems,” in Proc.
8th ACM Int. Conf. Distrib. Event-Based Syst., 2014, pp. 13–22.

[28] C.-K. Shieh, S.-W. Huang, L.-D. Sun, M.-F. Tsai, and N. Chilamkurti,
“A topology-based scaling mechanism for apache storm,” Int. J. Netw.
Manage., vol. 27, no. 3, 2017, Art. no. e1933.

[29] T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara, “Online
scheduling and interference alleviation for low-latency, high-throughput
processing of data streams,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 12, pp. 3553–3569, Dec. 2017.

[30] T. Li, J. Tang, and J. Xu, “Performance modeling and predictive scheduling
for distributed stream data processing,” IEEE Trans. Big Data, vol. 2, no. 4,
pp. 353–364, Dec. 2016.

[31] S. Kulkarni et al., “Twitter heron: Stream processing at scale,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2015, pp. 239–250.

[32] B. Zhao, N. Q. V. Hung, and M. Weidlich, “Load shedding for complex
event processing: Input-based and state-based techniques,” in Proc. IEEE
36th Int. Conf. Data Eng., 2020, pp. 1093–1104.

[33] A. Slo, S. Bhowmik, and K. Rothermel, “eSPICE: Probabilistic load
shedding from input event streams in complex event processing,” in Proc.
20th Int. Middleware Conf., 2019, pp. 215–227.

[34] K. Chapnik, I. Kolchinsky, and A. Schuster, “Darling: Data-aware load
shedding in complex event processing systems,” in Proc. VLDB Endow-
ment, vol. 15, no. 3, pp. 541–554, 2021.

[35] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online schedul-
ing in storm,” in Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst., 2014,
pp. 535–544.

[36] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[37] V. Cardellini, F. L. Presti, M. Nardelli, and G. R. Russo, “Decentralized
self-adaptation for elastic data stream processing,” Future Gener. Comput.
Syst., vol. 87, pp. 171–185, 2018.

[38] H. Arkian, G. Pierre, J. Tordsson, and E. Elmroth, “Model-based stream
processing auto-scaling in geo-distributed environments,” in Proc. Int.
Conf. Comput. Commun. Netw., 2021, pp. 1–10.

[39] X. Liu, A. V. Dastjerdi, R. N. Calheiros, C. Qu, and R. Buyya, “A
stepwise auto-profiling method for performance optimization of streaming
applications,” ACM Trans. Auton. Adaptive Syst., vol. 12, no. 4, pp. 1–33,
2017.

[40] “A deep-dive into flink’s network stack.” Accessed: May 17, 2024. [On-
line]. Available: https://flink.apache.org/2019/06/05/flink-network-stack.
html

[41] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on Bayesian optimiza-
tion of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning,” 2010, arXiv:1012.2599.

[42] D. J. Lizotte, “Practical bayesian optimization,” Univ. Alberta, Edmonton,
Canada, 2008.

[43] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.
data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[44] F. Zhuang et al., “A comprehensive survey on transfer learning,” in Proc.
IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

[45] L. Zhang, W. Zheng, C. Li, Y. Shen, and M. Guo, “Autrascale: An auto-
mated and transfer learning solution for streaming system auto-scaling,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2021, pp. 912–921.

[46] J. D. Little, “A proof for the queuing formula: L= λ w,” Operations Res.,
vol. 9, no. 3, pp. 383–387, 1961.

[47] J. D. Little, “Or forum–little’s law as viewed on its 50th anniversary,”
Operations Res., vol. 59, no. 3, pp. 536–549, 2011.

[48] J. Wenger, G. Pleiss, P. Hennig, J. Cunningham, and J. Gardner, “Precon-
ditioning for scalable gaussian process hyperparameter optimization,” in
Proc. Int. Conf. Mach. Learn., 2022, pp. 23751–23780.

[49] S. Chintapalli et al., “Benchmarking streaming computation engines:
Storm, flink and spark streaming,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops, 2016, pp. 1789–1792.

[50] “Extended Yahoo Streaming job.” Accessed: May 17, 2024. [Online].
Available: https://github.com/dataArtisans/yahoo-streaming-benchmark

[51] “Apache beam nexmark benchmark suite.” Accessed: May 17, 2024.
[Online]. Available: https://beam.apache.org/documentation/sdks/java/
testing/\\nexmark/

[52] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling of
container-based applications using reinforcement learning,” in Proc. IEEE
12th Int. Conf. Cloud Comput., 2019, pp. 329–338.

[53] E. Casalicchio, “A study on performance measures for auto-scaling cpu-
intensive containerized applications,” Cluster Comput., vol. 22, no. 3,
pp. 995–1006, 2019.

[54] W. Iqbal, M. Dailey, and D. Carrera, “SLA-driven adaptive resource
management for web applications on a heterogeneous compute cloud,”
in Proc. IEEE Int. Conf. Cloud Comput., 2009, pp. 243–253.

[55] M. Gotin, F. Lösch, R. Heinrich, and R. Reussner, “Investigating per-
formance metrics for scaling microservices in cloudiot-environments,” in
Proc. ACM/SPEC Int. Conf. Perform. Eng., 2018, pp. 157–167.

[56] F. Rossi, V. Cardellini, and F. L. Presti, “Self-adaptive threshold-based
policy for microservices elasticity,” in Proc. 28th Int. Symp. Model. Anal.
Simul. Comput. Telecommun. Syst., 2020, pp. 1–8.

[57] S. Horovitz and Y. Arian, “Efficient cloud auto-scaling with sla objective
using q-learning,” in Proc. IEEE 6th Int. Conf. Future Internet Things
Cloud, 2018, pp. 85–92.

[58] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi,
“Integrated and autonomic cloud resource scaling,” in Proc. IEEE Netw.
Operations Manage. Symp., 2012, pp. 1327–1334.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

https://cloud.google.com/blog/products/gcp/comparing-cloud-dataflow-autoscaling-to-spark-and-hadoop
https://cloud.google.com/blog/products/gcp/comparing-cloud-dataflow-autoscaling-to-spark-and-hadoop
https://flink.apache.org/2019/06/05/flink-network-stack.html
https://flink.apache.org/2019/06/05/flink-network-stack.html
https://github.com/dataArtisans/yahoo-streaming-benchmark
https://beam.apache.org/documentation/sdks/java/testing/LY1	extbackslash LY1	extbackslash nexmark/
https://beam.apache.org/documentation/sdks/java/testing/LY1	extbackslash LY1	extbackslash nexmark/

ZHANG et al.: BAYESIAN-DRIVEN AUTOMATED SCALING IN STREAM COMPUTING WITH MULTIPLE QOS TARGETS 1267

[59] M. Amiri and L. Mohammad-Khanli, “Survey on prediction models of
applications for resources provisioning in cloud,” J. Netw. Comput. Appl.,
vol. 82, pp. 93–113, 2017.

[60] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Trans. Netw.
Service Manag., vol. 18, no. 1, pp. 958–972, Mar. 2021.

[61] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine learning-
based auto-scaling for containerized applications,” Neural Comput. Appl.,
vol. 32, no. 13, pp. 9745–9760, 2020.

[62] L. Yazdanov, “Towards auto-scaling in the cloud: Online resource allo-
cation techniques,” Ph.D. dissertation, Technische Universität Dresden,
Dresden, Germany, 2016.

[63] P. Lama and X. Zhou, “Autonomic provisioning with self-adaptive neural
fuzzy control for percentile-based delay guarantee,” ACM Trans. Auton.
Adaptive Syst., vol. 8, no. 2, pp. 1–31, 2013.

[64] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A comparison of
reinforcement learning techniques for fuzzy cloud auto-scaling,” in Proc.
17th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput, 2017, pp. 64–73.

[65] J.-C. Lin, J. Mauro, T. B. Røst, and I. C. Yu, “A model-based scalability
optimization methodology for cloud applications,” in Proc. IEEE 7th Int.
Symp. Cloud Service Comput., 2017, pp. 163–170.

[66] A. U. Gias, G. Casale, and M. Woodside, “Atom: Model-driven autoscaling
for microservices,” in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst.,
2019, pp. 1994–2004.

[67] J. H. Novak, S. K. Kasera, and R. Stutsman, “Cloud functions for fast
and robust resource auto-scaling,” in Proc. 11th Int. Conf. Commun. Syst.
Netw., 2019, pp. 133–140.

[68] F. Rossi, V. Cardellini, and F. L. Presti, “Hierarchical scaling of mi-
croservices in kubernetes,” in Proc. IEEE Int. Conf. Autonomic Comput.
Self-Organizing Syst., 2020, pp. 28–37.

[69] S. Merkouche and C. Bouanaka, “A proactive formal approach for
microservice-based applications auto-scaling,” in Proc. 11th Seminary
Comput. Sci. Res. Feminine LIRE Lab. Constantine, vol. 2, pp. 15–28,
2022.

[70] A. Shahidinejad, M. Ghobaei-Arani, and L. Esmaeili, “An elastic con-
troller using colored petri nets in cloud computing environment,” Cluster
Comput., vol. 23, no. 2, pp. 1045–1071, 2020.

[71] T.-Y. Hsu and A. D. Kshemkalyani, “A proactive, cost-aware, optimized
data replication strategy in geo-distributed cloud datastores,” in Proc. 12th
IEEE/ACM Int. Conf. Utility Cloud Comput., 2019, pp. 143–153.

[72] D. Saxena and A. K. Singh, “A high availability management model based
on VM significance ranking and resource estimation for cloud applica-
tions,” IEEE Trans. Services Comput., vol. 16, no. 3, pp. 1604–1615,
May/Jun. 2022.

[73] D. Saxena, J. Kumar, A. K. Singh, and S. Schmid, “Performance analysis
of machine learning centered workload prediction models for cloud,” IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 4, pp. 1313–1330, Apr. 2023.

[74] A. K. Singh, D. Saxena, J. Kumar, and V. Gupta, “A quantum approach
towards the adaptive prediction of cloud workloads,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 12, pp. 2893–2905, Dec. 2021.

Liang Zhang (Student Member, IEEE) received the
BE degree in computer science and technology from
Northeastern University in China, in 2018. She is
currently working toward the PhD degree with the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University. Her research interest
includes stream processing and resource scheduling
in the cloud or edge computing environment. For
more information, please visit https://zl-cs.github.io/.

Wenli Zheng (Member, IEEE) received the PhD
degree in electrical and computer engineering from
The Ohio State University, in 2016. He is currently
a tenure-track assistant professor with Shanghai Jiao
Tong University. His research interests include com-
puter architecture, data center power management,
and data-driven computing.

Kuangyu Zheng (Member, IEEE) received the PhD
degree in computer engineering from the Ohio State
University. He is an associate professor with the
School of Electronic and Information Engineering,
Beihang University. His research interests include
energy-efficient communication, computer, and net-
work systems. He has received the Distinguished
Paper Award and Best Student Paper Award of SAGC
2021; He has also received the Distinguished Service
Award from IEEE GreenCom 2023. He is the commit-
tee member of IMT-2020 (5 G) and IMT-2030 (6 G)

research promotion group of MIIT, China, and the executive committee member
of CCF TCARCH and CCF TCCOMM.

Hongzi Zhu (Senior Member, IEEE) received the
PhD degree in computer science from Shanghai Jiao
Tong University, in 2009. He was a posdoctoral fel-
low with the Department of Computer Science and
Engineering, Hong Kong University of Science and
Technology, and the Department of Electrical and
Computer Engineering, University of Waterloo, in
2009 and 2010, respectively. He is now a professor
with the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University. His research
interests include mobile sensing, mobile computing,

and Internet of Things. He received the Best Paper Award from IEEE Globecom
2016. He is an associate editor for IEEE Transactions on Vehicular Technol-
ogy and IEEE Internet of Things Journal For more information, please visit
http://lion.sjtu.edu.cn.

Chao Li (Senior Member, IEEE) received the PhD
degree from the University of Florida, in 2014. He
is a full professor with the Department of Computer
Science and Engineering, Shanghai Jiao Tong Univer-
sity. His primary research area is system architecture
design with an emphasis on energy-efficient, high-
performance computers of large scale. His broader
research interests also include emerging technologies
and evolving applications that could ultimately shape
the next-generation computing paradigms.

Minyi Guo (Fellow, IEEE) received the PhD degree
in computer science from the University of Tsukuba,
Japan. He is a Zhiyuan chair professor with the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China. He is currently
Zhiyuan chair professor. His present research inter-
ests include parallel/distributed computing, compiler
optimizations, embedded systems, pervasive comput-
ing, Big Data and cloud computing. He is now on the
editorial board for IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Cloud

Computing and Journal of Parallel and Distributed Computing.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 25,2024 at 06:52:23 UTC from IEEE Xplore. Restrictions apply.

https://zl-cs.github.io/
http://lion.sjtu.edu.cn

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

